9780133128901

Introduction to Data Mining

by ; ; ;
  • ISBN13:

    9780133128901

  • ISBN10:

    0133128903

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2018-01-04
  • Publisher: Pearson

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $51.07
    Check/Direct Deposit: $48.64
    PayPal: $48.64
List Price: $165.33 Save up to $134.54
  • Rent Book $57.87
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE
    CURRENTLY AVAILABLE, USUALLY SHIPS IN 24-48 HOURS

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

Introducing the fundamental concepts and algorithms of data mining

Introduction to Data Mining, 2nd Edition , gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.

Author Biography

Dr Pang-Ning Tan is a Professor in the Department of Computer Science and Engineering at Michigan State University. He received his M.S. degree in Physics and Ph.D. degree in Computer Science from University of Minnesota. His research interests focus on the development of novel data mining algorithms for a broad range of applications, including climate and ecological sciences, cybersecurity, and network analysis. He has published more than 130 technical papers in the area of data mining, including top conferences and journals such as KDD, ICDM, SDM, CIKM, and TKDE.


Dr. Michael Steinbach is a Research Scientist in the department of Computer Science and Engineering at the University of Minnesota, from which he earned a B.S. degree in Mathematics, an M.S. degree in Statistics, and M.S. and Ph.D. degrees in Computer Science. His research interests are in the areas of data mining, machine learning, and statistical learning and its applications to fields, such as climate, biology, and medicine. This research has resulted in more than 100 papers published in the proceedings of major data mining conferences or computer science or domain journals. Previous to his academic career, he held a variety of software engineering, analysis, and design positions in industry at Silicon Biology, Racotek, and NCR.


Dr. Anuj Karpatne is a Post Doctoral Associate in the Department of Computer Science and Engineering at the University of Minnesota. He received his M.Tech in Mathematics and Computing from the Indian Institute of Technology Delhi, and a Ph.D. in Computer Science at the University of Minnesota under the guidance of Prof. Vipin Kumar. His research interests lie in the development of data mining and machine learning algorithms for solving scientific and socially relevant problems in varied disciplines such as climate science, hydrology, and healthcare. His research has been published at top-tier journals and conferences such as SDM, ICDM, KDD, NIPS, TKDE, and ACM Computing Surveys.


Dr. Vipin Kumar is a Regents Professor at the University of Minnesota, where he holds the William Norris Endowed Chair in the Department of Computer Science and Engineering.  His research interests include data mining, high-performance computing, and their applications in Climate/Ecosystems and health care.  Kumar's foundational research been honored by the ACM SIGKDD 2012 Innovation Award, which is the highest award for technical excellence in the field of Knowledge Discovery and Data Mining (KDD), and the 2016 IEEE Computer Society Sidney Fernbach Award, one of IEEE Computer Society's highest awards in high performance computing.

Table of Contents

1. Introduction

2. Data

3. Classification: Basic Concepts and Techniques

4. Classification: Alternative Techniques

5. Association Analysis: Basic Concepts and Algorithms

6. Association Analysis: Advanced Concepts

7. Cluster Analysis: Basic Concepts and Algorithms

8. Cluster Analysis: Additional Issues and Algorithms

9. Anomaly Detection

10. Avoiding False Discoveries

Rewards Program

Write a Review