did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780471246787

Introduction to Ionomers

by ;
  • ISBN13:

    9780471246787

  • ISBN10:

    0471246786

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1998-05-06
  • Publisher: Wiley-Interscience
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $268.74 Save up to $0.34
  • Buy New
    $268.40
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

A practical introduction to one of today's most exciting and rapidly growing areas of polymer science. Introduction to Ionomers affords chemists, engineers, and graduate students an opportunity to familiarize themselves quickly and thoroughly with one of today's most commercially important classes of polymers. Featuring a balanced, fully integrated presentation of basic science and state-of-the-art applications, the book provides the depth of knowledge researchers need to make optimal use of established ionomeric processes or to develop new systems of their own. The book's primary conceptual thrust is the relationship between polymeric architecture and polymeric morphology and properties when affected by ionic groups. While it provides in-depth coverage of all common classes of ionomeric materials--including polystyrenes, polyethylenes, polyurethanes, and polyacrylics--non-crystalline materials are emphasized over partly-crystalline materials. Co-author Adi Eisenberg, a leading ionomer pioneer and innovator, provides a uniquely intimate historical perspective on the field as it has developed over the past three decades. Newcomers to ionomers will appreciate the authors' clear and methodical presentations of difficult concepts, designed to promote rapid mastery of the core principles involved. The product of an exhaustive survey of the huge and rapidly growing world literature on the subject, Introduction to Ionomers is also an excellent resource for experienced professionals attempting to stay abreast of important recent developments in the field.

Author Biography

ADI EISENBERG, PhD, is Otto Maass Professor of Chemistry at McGill University in Montreal, Canada.<br> <br> EOP KIM, PhD, is Assistant Professor in the Department of Polymer Science and Engineering at Chosun University in Kwangju, Korea.

Table of Contents

PREFACE xiii(2)
LIST OF SYMBOLS AND ABBREVIATIONS
xv
1 INTRODUCTION
1(16)
1.1. Definitions
2(1)
1.2. Nomenclature
3(1)
1.3. Historical Aspects
4(3)
1.4. Reasons for Interest in Ionomers
7(1)
1.5. Aims of the Presentation
8(1)
1.6. Ionic Interactions
9(1)
1.7. Sizes of Ionic Groups
9(2)
1.8. Methods of Expressing Ion Concentrations
11(1)
1.9. Topics Omitted from This Treatment
12(1)
1.10. Order of Presentation
12(1)
1.11. References
13(4)
2 STRUCTURAL VARIABILITY IN IONOMERS
17(21)
2.1. Architectural Variation
17(11)
2.1.1. Monochelics, Telechelics, and Block Copolymers
17(1)
2.1.1.1. Single Ions at Chain Ends
17(2)
2.1.1.2. Telechelics
19(1)
2.1.1.3. Block Copolymers
20(3)
2.1.2. Simple Random Copolymers
23(2)
2.1.3. Other Ionomer Families
25(1)
2.1.3.1. Chains with Regularly Spaced Ions
25(1)
2.1.3.2. Combs
25(3)
2.1.3.3. Grafts
28(1)
2.1.3.4. Polymer-Salt Mixtures
28(1)
2.2. Chemical Structures
28(6)
2.2.1. Type of Attachment of Pendent Ion
28(1)
2.2.2. Nature of Pendent Ions
29(1)
2.2.3. Counterions
30(2)
2.2.4. The Nonionic Host Polymer
32(1)
2.2.5. Inorganic Systems
33(1)
2.3. Concluding Comments
34(1)
2.4. References
34(4)
3 MORPHOLOGY OF RANDOM IONOMERS
38(21)
3.1. Multiplets
38(7)
3.1.1. Size and Shape of Multiplet
38(1)
3.1.1.1. Energetics
38(1)
3.1.1.2. Solid Angle and Contact Surface Area Concepts
39(1)
3.1.1.3. Shapes of Multiplets
39(1)
3.1.1.4. Effect of Ion Content and Dielectric Constant
40(1)
3.1.1.5. Other Factors
40(1)
3.1.2. Arrangements of Ion Pairs
40(1)
3.1.3. Arrangement of the Multiplets
41(1)
3.1.3.1. Small-Angle Ionic Peak
41(1)
3.1.3.2. Multiplet-Cluster Concept
42(1)
3.1.3.3. Hard-Sphere Model
42(1)
3.1.3.4. Core-Shell Model
42(1)
3.1.3.5. Dilemma of Hard-Sphere and Core-Shell Models
43(1)
3.1.3.6. Morphological Continuity and Mechanical Properties
44(1)
3.2. EHM Model
45(5)
3.2.1. Restricted Mobility Region
45(2)
3.2.2. New Cluster Concept
47(2)
3.2.3. Prevalent Intermultiplet Distance
49(1)
3.2.4. Semiquantitative Aspects
49(1)
3.3. Experimental Corroboration
50(4)
3.3.1. Small-Angle X-Ray Scattering Peak
50(1)
3.3.2. Dynamic Mechanical Studies
51(1)
3.3.3. Volume Fraction of Clusters
52(1)
3.3.4. Thickness of the Restricted Mobility Layer
52(1)
3.3.5. Unclustered Materials and Homoblends
53(1)
3.3.6. Experimental Evidence for Reduced Mobility
53(1)
3.4. Coil Dimensions in Random Ionomers
54(1)
3.5. References
55(4)
4 GLASS TRANSITIONS IN RANDOM IONOMERS
59(27)
4.1. Effect of Ionic Forces
59(2)
4.2. Glass Transition Versus Electrostatic Work
61(1)
4.3. Two Glass Transitions
62(3)
4.3.1. Two Loss Tangent Peaks
63(1)
4.3.2. Two Glass Transitions by DSC
63(2)
4.3.3. Expansion Coefficients
65(1)
4.4. Matrix Glass Transition
65(10)
4.4.1. The Charge/Distance Effect
65(4)
4.4.2. Glass Transition Versus Percent Neutralization
69(1)
4.4.3. Copolymerization, Cross-linking, and Filler Effects
69(2)
4.4.4. Change in Glass Transition as a Function of Change in Ion Concentration
71(1)
4.4.5. Ammonium Counterions
72(1)
4.4.6. Internal Plasticization Effect
73(1)
4.4.7. Semicrystalline Materials
74(1)
4.4.8. Theories
74(1)
4.5. Cluster Glass Transition
75(8)
4.5.1. Effect of Immobilization
75(2)
4.5.2. Differences in the Two Glass Transition Temperature Values
77(2)
4.5.3. Homoblends
79(2)
4.5.4. Unclustered Materials
81(1)
4.5.5. Differences in Clustering Behavior of Styrene Ionomers
81(1)
4.5.6. Mechanism of the Cluster Glass Transition
82(1)
4.6. References
83(3)
5 STYRENE IONOMERS
86(63)
5.1. Stress-Relaxation of Sodium Methacrylate Systems
87(2)
5.2. Dynamic Mechanical Studies of Sodium Methacrylate Systems
89(6)
5.2.1. Glassy Modulus
89(1)
5.2.2. Loss Tangent Peaks
89(1)
5.2.3. Ionic Modulus
90(1)
5.2.4. Cross-Linking
90(2)
5.2.5. Filler
92(2)
5.2.6. Percolation
94(1)
5.3. Melt Rheology of Sodium Methacrylate Systems
95(1)
5.4. Viscoelasticity of Other Carboxylated Ionomers
96(5)
5.4.1. P(S-co-ANa) versus P(S-co-MANa)
98(1)
5.4.2. P(S-co-SCNa) versus P(S-co-MANa)
98(1)
5.4.3. Combs
99(2)
5.5. Pendent Ion Effect on Viscoelasticity
101(8)
5.5.1. Sulfonated Ionomers
101(3)
5.5.2. Benzyloxy or Phenoxy Ionomers
104(1)
5.5.3. Vinylpyridinium Methyl Iodide Ionomers
105(1)
5.5.4. Homoblends
106(3)
5.6. Effects of Various Other Parameters
109(5)
5.6.1. Dielectric Constant
109(1)
5.6.2. Counterions
110(1)
5.6.3. Molecular Weight
111(1)
5.6.4. Degree of Neutralization
111(3)
5.7. Ion Hopping
114(3)
5.8. Other Physical Properties and Spectroscopy
117(19)
5.8.1. Density
117(1)
5.8.2. Dielectric Properties
118(4)
5.8.3. Spectroscopy
122(1)
5.8.3.1. Infrared
122(3)
5.8.3.2. Raman
125(1)
5.8.3.3. Nuclear Magnetic Resonance
125(1)
5.8.3.4. Electron Spin Resonance
126(1)
5.8.3.5. Extended X-Ray Absorption Fine Structure
127(2)
5.8.4. Orientation
129(2)
5.8.5. Gas Transport
131(1)
5.8.6. Water Absorption
132(1)
5.8.7. Transport of Nongaseous Materials
133(3)
5.9. Fatigue and Fracture Properties
136(1)
5.10. Nonequilibrium Behavior
137(4)
5.11. Chemistry in Ionomers
141(2)
5.11.1. Stability
141(2)
5.11.2. Reactions in Ionomers
143(1)
5.12. References
143(6)
6 PARTLY CRYSTALLINE IONOMERS
149(41)
6.1. Polyethylene
150(14)
6.1.1. Stress-Relaxation
150(1)
6.1.2. Dynamic Mechanical Properties
151(1)
6.1.3. Melt Rheology
152(1)
6.1.4. Other Mechanical Properties
153(1)
6.1.5. Dielectric Properties
153(3)
6.1.6. Spectroscopy
156(1)
6.1.6.1. Infrared
156(2)
6.1.6.2. Raman
158(1)
6.1.6.3. Electron Spin Resonance
158(1)
6.1.6.4. Nuclear Magnetic Resonance
159(1)
6.1.7. Water Uptake
160(1)
6.1.8. Crystallinity
160(2)
6.1.9. Permeation
162(1)
6.1.10. Orientation
163(1)
6.1.11. Concluding Comments
164(1)
6.2. Polytetrafluoroethylene
164(19)
6.2.1. Crystallinity
165(1)
6.2.2. Mechanical Properties
166(3)
6.2.3. Other Physical Properties
169(2)
6.2.4. Dielectric Properties
171(1)
6.2.5. Spectroscopy
172(1)
6.2.5.1. Nuclear Magnetic Resonance
172(1)
6.2.5.2. Infrared
172(1)
6.2.6. Morphology
173(2)
6.2.7. Water Uptake and Diffusion
175(4)
6.2.9. Permeation
179(3)
6.2.10. Chemistry
182(1)
6.3. Polypentenamer
183(1)
6.3.1. Synthesis and Thermal Properties
183(1)
6.3.2. Mechanical Properties
183(1)
6.3.3. Morphology
184(1)
6.4. References
184(6)
7 OTHER IONOMERS
190(54)
7.1. Ionomers with Statistical Ion Placement
190(24)
7.1.1. Elastomers
190(1)
7.1.1.1. Butadiene-Based Elastomers
190(2)
7.1.1.2. Ethylene-Propylene-Diene Terpolymers
192(1)
7.1.1.3. Polyurethane Ionomers
193(1)
7.1.3.1.1. Physical Properties
194(8)
7.1.1.3.2. Morphology
202(2)
7.1.2. Acrylate and Methacrylate Ionomers
204(5)
7.1.3. Zwitterionic Systems
209(1)
7.1.3.1. Siloxane-Based Di-Zwitterionomers
209(1)
7.1.3.2. Hydrocarbon-Based Zwitterionomers
210(4)
7.2. Ionomers with Regular Architectures
214(24)
7.2.1. Block Ionomers
214(1)
7.2.1.1. Morphology
214(4)
7.2.1.2. Mechanical Properties
218(2)
7.2.2. Monochelics, Telechelics, and Stars
220(1)
7.2.2.1. Monochelics
221(1)
7.2.2.2. Telechelics
221(3)
7.2.2.3. Stars
224(5)
7.2.3. Ionenes
229(4)
7.2.4. Polymer-Salt Mixtures
233(5)
7.3. References
238(6)
8 PLASTICIZATION
244(23)
8.1. Small Molecule Plasticizers of High Polarity
245(5)
8.1.1. Mechanical Properties
245(3)
8.1.2. Morphology
248(2)
8.2. Plasticizers of Low Polarity
250(6)
8.2.1. Small Molecule Plasticizers
250(1)
8.2.1.1. Mechanical Properties
250(4)
8.2.1.2. Morphology
254(1)
8.2.2. Oligomeric Plasticizers
255(1)
8.3. Amphiphilic Plasticizers
256(6)
8.3.1. Surfactants
256(2)
8.3.2. Oligomeric Amphiphiles
258(1)
8.3.2.1. Mechanical Properties
258(2)
8.3.2.2. Morphology
260(1)
8.3.3. Amines
261(1)
8.4. Internal Plasticization
262(2)
8.4.1. Mechanical Properties
262(1)
8.4.2. Morphology
263(1)
8.5. Summary
264(1)
8.6. References
265(2)
9 IONOMER BLENDS
267(40)
9.1. Techniques for Characterizing Miscibility
268(1)
9.2. Menu of Interactions
269(3)
9.3. Morphology
272(1)
9.4. Cross-linking and Plasticization
272(2)
9.5. Ion-Ion Blends
274(6)
9.6. Ion Pair-Ion Pair Blends
280(2)
9.7. Ion-Dipole Blends
282(7)
9.8. Ion-Coordination Blends
289(7)
9.9. Miscellaneous Blends
296(6)
9.9.1. Telechelic Blends
296(3)
9.9.2. Blends of Ionomers with Their Nonionic Parent Polymers
299(2)
9.9.3. Styrene Ionomer-Poly(Phenylene Oxide) Blends
301(1)
9.10. Concluding Remarks
302(1)
9.11. References
302(5)
10 APPLICATIONS
307(8)
10.1. Membranes and Thin Films
307(4)
10.1.1. Membranes
307(1)
10.1.2. Packaging
308(1)
10.1.3. Fertilizer
309(1)
10.1.4. Floor Polish
309(1)
10.1.5. Imaging Systems
310(1)
10.1.6. Magnetic Recording Media
311(1)
10.1.7. Adhesives
311(1)
10.2. Ionomers in Bulk
311(1)
10.2.1. Plastics
311(1)
10.2.2. Elastomers
312(1)
10.3. Drilling Fluids
312(1)
10.4. Catalysts and Catalytic Supports
312(1)
10.5. References
313(2)
INDEX 315

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program