rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780262538688

Introduction to Statistical Relational Learning

by Getoor, Lise; Taskar, Ben
  • ISBN13:

    9780262538688

  • ISBN10:

    0262538687

  • Format: Paperback
  • Copyright: 2019-09-22
  • Publisher: The MIT Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $64.00 Save up to $20.80
  • Rent Book $43.20
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Introduction to Statistical Relational Learning [ISBN: 9780262538688] for the semester, quarter, and short term or search our site for other textbooks by Getoor, Lise; Taskar, Ben. Renting a textbook can save you up to 90% from the cost of buying.

Summary

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Author Biography

Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.

Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.

Daphne Koller is Professor in the Department of Computer Science at Stanford University.

Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.

Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.

Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.

Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.

Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.

Daphne Koller is Professor in the Department of Computer Science at Stanford University.

Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.

Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.

Pieter Abbeel is Assistant Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley.

Daphne Koller is Professor in the Department of Computer Science at Stanford University.

David Heckerman is Assistant Professor of Computer Science at the University of Southern California. He received his doctoral degree in Medical Information Sciences from Stanford University.

Daphne Koller is Professor in the Department of Computer Science at Stanford University.

Stuart Russell is Associate Professor of Computer Science at the University of California, Berkeley. This book builds on important philosophical and technical work by his coauthor, the late Eric Wefald.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program