did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780471513391

Introduction to X-Ray Powder Diffractometry

by ;
  • ISBN13:

    9780471513391

  • ISBN10:

    0471513393

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1996-07-12
  • Publisher: Wiley-Interscience
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $231.41 Save up to $0.16
  • Buy New
    $231.25
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

Introduction to X-ray Powder Diffractometry, a collaboration between two internationally known and respected experts in the field, provides invaluable guidance to anyone using X-ray powder diffractometers and diffractometry in materials science, ceramics, the pharmaceutical industry, and elsewhere.

Author Biography

Ron Jenkins is General Manager at the International Centre for Diffraction Data in Newtown Square, Pennsylvania. He has been involved in X-ray research for over thirty years and has received several professional awards. Dr. Jenkins is the author of X-ray Fluorescence Spectrometry, An Introduction to X-ray Spectrometry, and six other books, as well as numerous papers and audio courses. He also wrote the section on X-ray technology in Kirk-Othmer Encyclo-pedia of Chemical Technology.<br> <br> L. Snyder is Professor of Ceramic Science at New York State College of Ceramics at Alfred University, and Director of the university's Institute for Ceramic Superconduc-tivity. A Fellow of the American Ceramic Society, Professor Snyder is the author of two previous books and more than 200 published papers. He is active in numerous professional organizations and speaks frequently at conferences.

Table of Contents

PREFACE xvii(2)
CUMULATIVE LISTING OF VOLUMES IN SERIES xix
CHAPTER 1. CHARACTERISTICS OF X-RADIATION
1(22)
1.1. Early Development of X-ray Diffraction
1(1)
1.2. Origin of X-radiation
2(1)
1.3. Continuous Radiation
3(2)
1.4. Characteristic Radiation
5(9)
1.4.1. The Photoelectric Effect
5(1)
1.4.2. The Auger Effect
5(2)
1.4.3. Fluorescent Yield
7(1)
1.4.4. Selection Rules
7(4)
1.4.5. Nondiagram Lines
11(1)
1.4.6. Practical Form of the Copper K Spectrum
12(2)
1.5. Scattering of X-rays
14(2)
1.5.1. Coherent Scatter
15(1)
1.5.2. Compton Scatter
15(1)
1.6. Absorption of X-rays
16(3)
1.7. Safety Considerations
19(2)
References
21(2)
CHAPTER 2. THE CRYSTALLINE STATE
23(24)
2.1. Introduction to the Crystalline State
23(3)
2.2. Crystallographic Symmetry
26(9)
2.2.1. Point Groups and Crystal Systems
28(2)
2.2.2. The Unit Cell and Bravais Lattices
30(1)
2.2.3. Reduced Cells
31(3)
2.2.4. Space Groups
34(1)
2.3. Space Group Notation
35(6)
2.3.1. The Triclinic or Anorthic Crystal System
35(1)
2.3.2. The Monoclinic Crystal System
35(2)
2.3.3. The Orthorhombic Crystal System
37(1)
2.3.4. The Tetragonal Crystal System
37(1)
2.3.5. The Hexagonal and Trigonal Crystal Systems
38(1)
2.3.6. The Cubic Crystal System
38(1)
2.3.7. Equivalent Positions
39(1)
2.3.8. Special Positions and Site Multiplicity
40(1)
2.4. Space Group Theory
41(2)
2.5. Crystallographic Planes and Miller Indices
43(1)
References
44(3)
CHAPTER 3. DIFFRACTION THEORY
47(50)
3.1. Diffraction of X-rays
47(2)
3.2. The Reciprocal Lattice
49(5)
3.3. The Ewald Sphere of Reflection
54(3)
3.4. Origin of the Diffraction Pattern
57(3)
3.4.1. Single Crystal Diffraction
57(1)
3.4.2. The Powder Diffraction Pattern
58(2)
3.5. The Location of Diffraction Peaks
60(4)
3.6. Intensity of Diffraction Peaks
64(11)
3.6.1. Electron Scattering
64(1)
3.6.2. The Atomic Scattering Factor
65(2)
3.6.3. Anomalous Scattering
67(1)
3.6.4. Thermal Motion
68(2)
3.6.5. Scattering of X-rays by a Crystal: The Structure Factor
70(5)
3.7. The Calculated Diffraction Pattern
75(7)
3.7.1. Factors Affecting the Relative Intensity of Bragg Reflections
76(4)
3.7.2. The Intensity Equation
80(2)
3.8. Calculation of the Powder Diffraction Pattern of KCI
82(3)
3.9. Anisotropic Distortions of the Diffraction Pattern
85(9)
3.9.1. Preferred Orientation
85(4)
3.9.2. Crystallite Size
89(2)
3.9.3. Residual Stress and Strain
91(3)
References
94(3)
CHAPTER 4. SOURCES FOR THE GENERATION OF X-RADIATION
97(24)
4.1. Components of the X-ray Source
97(1)
4.2. The Line-Voltage Supply
98(1)
4.3. The High-Voltage Generator
99(6)
4.3.1. Selection of Operating Conditions
102(2)
4.3.2. Source Stability
104(1)
4.4. The Sealed X-ray Tube
105(9)
4.4.1. Typical X-ray Tube Configuration
106(3)
4.4.2. Specific Loading
109(4)
4.4.3. Care of the X-ray Tube
113(1)
4.5. Effective Line Width
114(2)
4.6. Spectral Contamination
116(2)
4.6.1. X-ray Tube Life
117(1)
4.7. The Rotating Anode X-ray Tube
118(2)
References
120(1)
CHAPTER 5. DETECTORS AND DETECTION ELECTRONICS
121(30)
5.1. X-ray Detectors
121(1)
5.2. Desired Properties of an X-ray Detector
122(5)
5.2.1. Quantum-Counting Efficiency
122(1)
5.2.2. Linearity
123(2)
5.2.3. Energy Proportionality
125(1)
5.2.4. Resolution
126(1)
5.3. Types of Detector
127(9)
5.3.1. The Gas Proportional Counter
128(2)
5.3.2. Position-Sensitive Detectors
130(1)
5.3.3. The Scintillation Detector
131(1)
5.3.4. The Si(Li) Detector
132(3)
5.3.5. Other X-ray Detectors
135(1)
5.4. Pulse Height Selection
136(2)
5.5. Counting Circuits
138(2)
5.5.1. The Ratemeter
139(1)
5.6. Counting Statistics
140(2)
5.7. Two-Dimensional Detectors
142(6)
References
148(3)
CHAPTER 6. PRODUCTION OF MONOCHROMATIC RADIATION
151(22)
6.1. Introduction
151(2)
6.2. Angular Dispersion
153(1)
6.3. Makeup of a Diffractogram
154(4)
6.3.1. Additional Lines in the Diffractogram
155(2)
6.3.2. Reduction of Background
157(1)
6.4. The Beta-Filter
158(4)
6.4.1. Thickness of the Beta-Filter
159(1)
6.4.2. Use of Pulse Height Selection to Supplement the Beta-Filter
160(2)
6.4.3. Placement of the Beta-Filter
162(1)
6.5. The Proportional Detector and Pulse Height Selection
162(1)
6.6. Use of Solid State Detectors
163(1)
6.7. Use of Monochromators
164(6)
6.7.1. The Diffracted-Beam Monochromator
167(3)
6.7.2. The Primary-Beam Monochromator
170(1)
6.8. Comparison of Monochromatization Methods
170(2)
References
172(1)
CHAPTER 7. INSTRUMENTS FOR THE MEASUREMENT OF POWDER PATTERNS
173(32)
7.1. Camera Methods
173(5)
7.1.1. The Debye-Scherrer/Hull Method
173(1)
7.1.2. The Gandolfi Camera
174(3)
7.1.3. The Guinier Camera
177(1)
7.2. The Powder Diffractometer
178(2)
7.3. The Seemann-Bohlin Diffractometer
180(1)
7.4. The Bragg-Brentano Diffractometer
180(7)
7.5. Systematic Aberrations
187(8)
7.5.1. The Axial-Divergence Error
187(4)
7.5.2. The Flat-Specimen Error
191(2)
7.5.3. Error Due to Specimen Transparency
193(1)
7.5.4. Error Due to Specimen Displacement
194(1)
7.6. Selection of Goniometer Slits
195(7)
7.6.1. Effect of Receiving Slit Width
195(2)
7.6.2. Effect of the Divergence Slit
197(5)
References
202(3)
CHAPTER 8. ALIGNMENT AND MAINTENANCE OF POWDER DIFFRACTOMETERS
205(26)
8.1. Principles of Alignment
205(11)
8.1.1. The Rough xyz Alignment
206(2)
8.1.2. Setting the Takeoff Angle
208(2)
8.1.3. Setting the Mechanical Zero
210(2)
8.1.4. Setting the 2:1
212(1)
8.1.5. Aligning of the Divergence Slit
213(1)
8.1.6. Tuning of the Monochromator
214(2)
8.2. Routine Alignment Checks
216(6)
8.3. Evaluation of the Quality of Alignment
222(4)
8.4. Troubleshooting
226(3)
References
229(2)
CHAPTER 9. SPECIMEN PREPARATION
231(30)
9.1. General Considerations
231(2)
9.2. Compositional Variations Between Sample and Specimen
233(1)
9.3. Absorption Problems
234(1)
9.4. Problems in Obtaining a Random Specimen
235(9)
9.4.1. Particle Inhomogeneity
235(1)
9.4.2. Crystal Habit and Preferred Orientation
236(4)
9.4.3. Particle Statistics
240(4)
9.5. Particle Separation and Size Reduction Methods
244(1)
9.6. Specimen Preparation Procedures
244(10)
9.6.1. Use of Standard Mounts
246(1)
9.6.2. Back and Side Loading
247(2)
9.6.3. Top Loading
249(1)
9.6.4. The Zero Background Holder Method
249(2)
9.6.5. Spray-Drying
251(2)
9.6.6. Use of Aerosols
253(1)
9.7. Measurement of the Prepared Specimen
254(4)
9.7.1. Specimen Displacement
254(1)
9.7.2. Mechanical Methods for Randomizing
255(2)
9.7.3. Handling of Small Samples
257(1)
9.7.4. Special Samples
257(1)
References
258(3)
CHAPTER 10. ACQUISITION OF DIFFRACTION DATA
261(26)
10.1. Introduction
261(1)
10.2. Steps in Data Acquisition
261(3)
10.3. Typical Data Quality
264(1)
10.4. Selection of the d-Spacing Range of the Pattern
265(5)
10.4.1. Choice of the 20 Range
266(1)
10.4.2. Choice of Wavelength
266(4)
10.5. Manual Powder Diffractometers
270(4)
10.5.1. Synchronous Scanning
270(1)
10.5.2. Use of Ratemeters
270(2)
10.5.3. Step Scanning
272(2)
10.6. Automated Powder Diffractometers
274(7)
10.6.1. Step Scanning with the Computer
277(2)
10.6.2. Choice of Step Width
279(1)
10.6.3. Open-Loop and Absolute Encoders
280(1)
10.7. Use of Calibration Standards
281(4)
10.7.1. External 20 Standards
282(1)
10.7.2. Internal 20 and d-Spacing Standards
283(1)
10.7.3. Quantitative Analysis Standards
283(1)
10.7.4. Sensitivity Standards
284(1)
10.7.5. Line Profile Standards
285(1)
References
285(2)
CHAPTER 11. REDUCTION OF DATA FROM AUTOMATED POWDER DIFFRACTOMETERS
287(32)
11.1. Data Reduction Procedures
287(1)
11.2. Range of Experimental Data to Be Treated
287(4)
11.2.1. Computer Reduction of Data
288(3)
11.3. Steps in Data Treatment
291(14)
11.3.1. Use of Data Smoothing
292(5)
11.3.2. Background Subtraction
297(2)
11.3.3. Treatment of the Alpha(2)
299(1)
11.3.4. Peak Location Methods
300(5)
11.4. Conversion Errors
305(3)
11.5. Calibration Methods
308(2)
11.5.1. 20 Correction Using an External Standard
308(1)
11.5.2. 20 and d-Spacing Correction Using an Internal Standard
309(1)
11.5.3. Sensitivity Correction Using an External Intensity Standard
309(1)
11.6. Evaluation of Data Quality
310(7)
11.6.1. Use of Figures of Merit
310(2)
11.6.2. Use of Figures of Merit for Instrument Performance Evaluation
312(1)
11.6.3. Use of Figures of Merit for Data Quality Evaluation
313(3)
11.6.4. Use of Figures of Merit in Indexing of Powder Patterns
316(1)
References
317(2)
CHAPTER 12. QUALITATIVE ANALYSIS
319(36)
12.1. Phase Identification by X-ray Diffraction
319(4)
12.1.1. Quality of Experiment Data
322(1)
12.2. Databases
323(6)
12.2.1. The Powder Diffraction File
324(2)
12.2.2. The Crystal Data File
326(1)
12.2.3. The Elemental and Interplanar Spacing Index (EISI)
327(1)
12.2.4. The Metals and Alloys Index
328(1)
12.3. Media on Which ICDD Databases Are Supplied
329(3)
12.3.1. Historical Evolution of Database Media
329(1)
12.3.2. Computer-Readable Products
330(1)
12.3.3. The CD-ROM System
331(1)
12.4. Manual Search/Matching Methods
332(12)
12.4.1. The Alphabetic Method
333(2)
12.4.2. The Hanawalt Search Method
335(4)
12.4.3. The Fink Search Method
339(5)
12.5. Limitations with the Use of Paper Search Manuals
344(1)
12.6. Boolean Search Methods
345(2)
12.7. Fully Automated Search Methods
347(3)
12.7.1. First-Generation Programs
347(1)
12.7.2. Second-Generation Search/Match Algorithms
348(1)
12.7.3. Commercial Search/Match Programs
348(1)
12.7.4. Third-Generation Search/Match Algorithms
349(1)
12.8. Effectiveness of Search/Matching Using the Computer
350(1)
References
351(4)
CHAPTER 13. QUANTITATIVE ANALYSIS
355(34)
13.1. Historical Development of Quantitative Phase Analysis
355(1)
13.2. Measurement of Line Intensities
356(5)
13.3. Foundation of Quantitative Phase Analysis
361(1)
13.4. The Absorption-Diffraction Method
362(7)
13.4.1. Use of Klug's Equation
365(2)
13.4.2. Use of Measured Mass Attenuation Coefficients
367(1)
13.4.3. Use of Mass Attenuation Coefficients Derived from Elemental Chemistry
368(1)
13.5. Method of Standard Additions
369(1)
13.6. The Internal Standard Method of Quantitative Analysis
370(6)
13.6.1. I/I(corundum) and the Reference Intensity Ratio Method
372(1)
13.6.2. The Generalized Reference Intensity Ratio
372(1)
13.6.3. Quantitative Analysis with RIRs
373(1)
13.6.4. The Normalized RIR Method
373(1)
13.6.5. Constrained XRD Phase Analysis: Generalized Internal Standard Method
374(2)
13.7. Quantitative Phase Analysis Using Crystal Structure Constraints
376(2)
13.8. Quantitative Methods Based on Use of the Total Pattern
378(6)
13.8.1. The Rietveld Method
378(5)
13.8.2. Full-Pattern Fitting with Experimental Patterns
383(1)
13.9. Detection of Low Concentrations
384(2)
References
386(3)
APPENDIX A: COMMON X-RAY WAVELENGTHS 389(1)
APPENDIX B: MASS ATTENUATION COEFFICIENTS 390(1)
APPENDIX C: ATOMIC WEIGHTS AND DENSITIES 391(1)
APPENDIX D: CRYSTALLOGRAPHIC CLASSIFICATION OF THE 230 SPACE GROUPS 392(5)
INDEX 397

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program