Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
Purchase Benefits
Looking to rent a book? Rent Inviting Disaster [ISBN: 9780066620824] for the semester, quarter, and short term or search our site for other textbooks by Chiles, James R.. Renting a textbook can save you up to 90% from the cost of buying.
Acknowledgments | p. xiii |
Introduction: On The Machine Frontier: New Technology And Old Habits | p. 1 |
Shock Wave: High Tech On The High Seas | p. 17 |
Blind Spot: Baffled And Bewildered Inside The Massive System | p. 37 |
Rush To Judgment: When Flagship Projects Run Out Of Time | p. 65 |
Doubtless: Testing Is Such A Bother | p. 95 |
The Really Bad Day: Panic And Triumph On The Machine Frontier | p. 117 |
Tunnel Vision: Go Away, I'm Busy | p. 139 |
Red Line Running: Humans Have A Limit, Too | p. 161 |
A Crack In The System: Failure Starts Slow, But It Grows | p. 181 |
The Healthy Fear: Alive And Alert At Danger's Edge | p. 205 |
That Human Touch: How Little Errors Make Big Accidents | p. 229 |
Robbing The Pillar: Slacking Off With The High-Power System | p. 259 |
Machine Man: Surviving And Thriving On The New Frontier | p. 275 |
Disasters, Calamities, And Near Misses Cited In The Book | p. 295 |
List Of Key Sources | p. 313 |
Index | p. 331 |
Table of Contents provided by Syndetics. All Rights Reserved. |
The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.
To see what kind of strange new world we are building for ourselves, consider what happened in January 1969 at the Hungarian Carbonic Acid Producing Company, at Répcelak, Hungary. The company was in the business of removing C02 from natural gas and selling it. The liquid was stored in small cylinders as well as in four big storage tanks, cooled by ammonia refrigeration. The gas arrived at the plant with traces of water in it that had to be removed. On occasion this stray water caused gauges, fittings, level indicators, and even safety valves to freeze shut. But the plant kept running.
On December 31, 1968, the plant shut down with the indicators showing at least twenty tons of liquid C02 in each tank. The plant opened again late on the night of January 1. Running short of cylinders to store the liquid C02, operators directed the flow into storage tank C, which was supposed to have plenty of capacity. About a half hour later tank C exploded, and its fragments blew apart tank D.
The twin explosions killed four people nearby and ripped tank A from its foundation bolts, tearing a hole about a foot across. In escaping furiously through the new opening, the pressurized, liquid C02 acted like a rocket propellant. Tank A took off under the thrust, crashing through a wall into the plant laboratory, dumping out tons of liquid C02 across the floor, and instantly freezing five people where they stood. The deluge left the room at a temperature of -108°F, starved of breathable air, and covered with a thick layer of dry ice.
We have been hard at work for more than two centuries now, building a world out of cold iron that is very far from our ancient instincts and traditions, and becoming more so. Machines going crazy are among the few things left on this civilized planet that can still inspire deep dread. I mean the kind of dread that railroad foreman James Roberts felt one wild night on December 28, 1879, when he ventured out onto the mile-long Tay Bridge, crossing a bay off eastern Scotland.
He was looking for a train that had rolled into the darkness to cross the bridge but had not reported in from the other side. With storm winds so high that he had to crawl a third of a mile along the bridge on his hands and knees, he stopped at a new chasm, opening onto the black waters eighty-eight feet below. A third of the bridge had collapsed into the Tay River estuary, taking the entire train and seventy-five passengers with it.
That bridge fell as a result of a combination of design errors and quality control problems, exposed by the high winds and the train's passage. Those kinds of problems continue, but the consequences are higher. Each year the margins of safety draw thinner, and the energies that we harness grow in power. The specs of our equipment may surprise you. Petrochermical plants have pressure vessels operating at twenty thousand pounds per square inch; modern coal-fired power plants have combustion chambers so big that an eight-story office building would fit easily inside the furnace of some of these monsters. Pulverized coal shoots into their combustion chambers, making a roiling, continuous fireball in the center.
In the cause of cost cutting, our machines keep getting bigger, putting more eggs in fewer baskets. The new Airbus A380 double-decker jetliner will start with 555 seats but has the capacity to eventually carry eight hundred people, putting potential death tolls into the passenger-ship category. And marine insurers are vexed about a proposed new generation of giant container-carrying ships. The biggest container carriers now fit only 3,500 full-size cargo boxes; the new ones should fit up to 10,000 of the forty-foot boxes. A single such ship if lost at sea with all cargo could sock underwriters with a loss of $2 billion or more.
The most awesome machines working today are not easily viewed because they are either kept in no-trespassing zones or used in remote locales. Recently television viewers were surprised by footage of the 505-foot, 8,300-ton destroyer USS Cole being carried piggyback on the heavy-lift vessel Blue Marlin. The Blue Marlin's earlier work had been out of the media spotlight, hauling rigs and equipment for offshore oil fields.
Our machines take us into risky locales, which might be outer space, up on a two-thousand-foot-tall tower, or on an artificial island, making our lives entirely dependent on their proper functioning. A mile-long complex of drilling platforms and petroleum processing plants called Ekofisk sits in the stormy North Sea, far from view of shore. Workers excavate salt mines far under great bodies of water; one of these mines drained a thousand-acre lake in Louisiana in 1980, after a drilling rig punched a hole in the mine's roof.
Some industries, such as nuclear power and chemical processing plants, have been operating more cautiously after infamous disasters in the 1980s, but others have taken their place in the headlines. The last two years have seen the twin failures of Mars Climate Orbiter and Mars Polar Lander, an unintentional nuclear reaction at the JCO Tokai Works Conversion Test Facility in Japan; and a rash of fires and explosions at fossil-fuel power plants nationwide in 1999. In June 1995 the Royal Majesty cruise ship grounded on the shoals near Nantucket Island because the cable to its Global Positioning System (GPS) antenna had come loose. Nobody on the ship's bridge noticed that the ship was miles off course. Normally the depth alarm would have gone off when less than ten feet of water remained under the hull, but somebody had set the alarm to stay quiet until zero feet of water remained. Such chains...
Inviting Disaster
Excerpted from Inviting Disaster: Lessons from the Edge of Technology by James R. Chiles
All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.