Preface XV
List of Contributors XIX
1 The Isotopic Composition of the Elements 1
Frank Vanhaecke and Kurt Kyser
1.1 Atomic Structure 1
1.2 Isotopes 2
1.3 Relation Between Atomic Structure and Natural Abundance of Elements and Isotopes 3
1.4 Natural Isotopic Composition of the Elements 5
1.4.1 Elements with Radiogenic Nuclides 7
1.4.1.1 Radioactive Decay 7
1.4.1.2 Elements with Radiogenic Nuclides 9
1.4.2 Effects Caused by Now Extinct Radionuclides 13
1.4.3 Mass-Dependent Isotope Fractionation 13
1.4.3.1 Isotope Fractionation in Physical Processes 15
1.4.3.2 Isotope Fractionation in Chemical Reactions 16
1.4.4 Mass-Independent Isotope Fractionation 20
1.4.5 Interaction of Cosmic Rays with Terrestrial Matter 23
1.4.6 Human-Made Variations 24
References 26
2 Single-Collector Inductively Coupled Plasma Mass Spectrometry 31
Frank Vanhaecke
2.1 Mass Spectrometry 31
2.2 The Inductively Coupled Plasma Ion Source 32
2.3 Basic Operating Principles of Mass Spectrometers 34
2.3.1 Mass Spectrometer Characteristics 34
2.3.1.1 Mass Resolution 34
2.3.1.2 Abundance Sensitivity 35
2.3.1.3 Mass Spectral Range 36
2.3.1.4 Scanning Speed 36
2.3.2 Quadrupole Filter 36
2.3.3 Double-Focusing Sector Field Mass Spectrometer 38
2.3.4 Time-of-Flight Analyzer 43
2.3.5 Comparison of Characteristics 45
2.4 Quadrupole-Based ICP-MS 45
2.5 Sample Introduction Strategies in ICP-MS 47
2.6 Spectral Interferences 50
2.6.1 Cool Plasma Conditions 51
2.6.2 Multipole Collision/Reaction Cell 52
2.6.2.1 Overcoming Spectral Interference via Chemical Resolution 53
2.6.2.2 Overcoming Spectral Interference via Collisional Deceleration and Kinetic Energy Discrimination 55
2.6.3 High Mass Resolution with Sector Field ICP-MS 55
2.7 Measuring Isotope Ratios with Single-Collector ICP-MS 56
2.7.1 Isotope Ratio Precision 57
2.7.1.1 Poisson Counting Statistics 57
2.7.1.2 Isotope Ratio Precision with Single-Collector ICP-MS 58
2.7.2 Detector Issues 62
2.7.2.1 Electron Multiplier Operating Principles 62
2.7.2.2 Detector Dead Time 62
2.7.3 Instrumental Mass Discrimination 66
References 68
3 Multi-Collector Inductively Coupled Plasma Mass Spectrometry 77
Michael Wieser, Johannes Schwieters, and Charles Douthitt
3.1 Introduction 77
3.2 Early Multi-Collector Mass Spectrometers 78
3.3 Variable Multi-Collector Mass Spectrometers 79
3.4 Mass Resolution and Resolving Power 81
3.5 Three-Isotope Plots for Measurement Validation 84
3.6 Detector Technologies for Multi-Collection 87
3.7 Conclusion 90
References 91
4 Advances in Laser Ablation–Multi-Collector Inductively Coupled Plasma Mass Spectrometry 93
Takafumi Hirata
4.1 Precision of Isotope Ratio Measurements 93
4.2 Stable Signal Intensity Profiles: Why So Important? 94
4.3 Signal Smoothing Device 99
4.4 Multiple Ion Counting 101
4.5 Isotope Fractionation During Laser Ablation and Ionization 102
4.6 Standardization of the Isotope Ratio Data 107
Acknowledgments 108
References 108
5 Correction of Instrumental Mass Discrimination for Isotope Ratio Determination with Multi-Collector Inductively Coupled Plasma Mass Spectrometry 113
Juris Meija, Lu Yang, Zolta´n Mester, and Ralph E. Sturgeon
5.1 Historical Introduction 113
5.2 Mass Bias in MC-ICP-MS 114
5.3 Systematics of Mass Bias Correction Models 115
5.3.1 External Gravimetric Calibration 116
5.3.2 Internal Double-Spike Calibration 117
5.3.3 Internal Calibration (Inter-Element) 117
5.3.4 External Bracketing Calibration (Inter-Element) 117
5.4 Logic of Conventional Correction Models 118
5.5 Pitfalls with Some Correction Models 119
5.5.1 Linear Law 119
5.5.2 Exponential Versus the Power Law 120
5.6 Integrity of the Correction Models 120
5.6.1 Russell’s Law 120
5.6.2 Discrimination Exponent 121
5.6.3 Discrimination Function 122
5.6.4 Second-Order Terms 124
5.7 The Regression Model 124
5.8 Calibration with Double Spikes 126
5.8.1 Caveat of the Model Choice 129
5.9 Calibration with Internal Correction 130
5.9.1 Intra-Elemental Correction 130
5.9.2 Inter-Elemental Correction 130
5.10 Uncertainty Evaluation 131
5.10.1 Uncertainty Modeling and the Double Spikes 132
5.11 Conclusion 133
References 134
6 Reference Materials in Isotopic Analysis 139
Jochen Vogl and Wolfgang Pritzkow
6.1 Introduction 139
6.2 Terminology 140
6.3 Determination of Isotope Amount Ratios 145
6.4 Isotopic Reference Materials 149
6.4.1 General 149
6.4.2 Historical Development 149
6.4.3 Requirements for Isotopic Reference Materials 151
6.5 Present Status, Related Problems, and Solutions 153
6.5.1 Present Status 153
6.5.2 Related Problems 154
6.5.3 Solution 156
6.6 Conclusion and Outlook 157
References 158
7 Quality Control in Isotope Ratio Applications 165
Thomas Meisel
7.1 Introduction 165
7.2 Terminology and Definitions 168
7.3 Measurement Uncertainty 174
7.3.1 Influence Quantities 177
7.3.1.1 Sampling 177
7.3.1.2 Sample Preparation 177
7.3.1.3 Isotope Amount Ratio Determination 177
7.3.1.4 Data Presentation with Isotope Notation 179
7.3.2 Example of Uncertainty Budget Estimation When Using Isotope Dilution 180
7.3.3 Alternative Approach 181
7.3.4 How to Establish Metrological Traceability 181
7.3.5 Method Validation 182
7.3.5.1 Limits of Detection, of Determination, and of Quantitation 182
7.3.5.2 Inter-Laboratory Studies 184
7.4 Conclusion 185
References 185
8 Determination of Trace Elements and Elemental Species Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry 189
Klaus G. Heumann
8.1 Introduction 189
8.2 Fundamentals 190
8.2.1 Principles of Isotope Dilution Mass Spectrometry 190
8.2.2 Elements Accessible to ICP-IDMS Analysis 194
8.2.3 Selection of Spike Isotope and Optimization of Its Amount 195
8.2.4 Uncertainty Budget and Limit of Detection 199
8.3 Selected Examples of Trace Element Determination via ICP-IDMS 200
8.3.1 Trends in ICP-IDMS Trace Analysis 200
8.3.2 Direct Determination of Trace Elements in Solid Samples via Laser Ablation and Electrothermal Vaporization ICP-IDMS 201
8.3.3 Representative Examples of Trace Element Determination via ICP-IDMS 203
8.3.3.1 Determination of Trace Amounts of Silicon in Biological Samples 203
8.3.3.2 Trace Element Analysis of Fossil Fuels 205
8.3.3.3 Trace Element Analysis via On-Line Photochemical Vapor Generation 207
8.3.3.4 Determination of Trace Amounts of Platinum Group Elements 208
8.3.3.5 Determination of Ultra-Trace Amounts of Transuranium Elements 211
8.3.4 ICP-IDMS in Elemental Speciation 212
8.3.4.1 Principles of ICP-IDMS in Elemental Speciation 212
8.3.4.2 Species-Specific ICP-IDMS 214
8.3.4.3 Species-Unspecific ICP-IDMS 221
References 230
9 Geochronological Dating 235
Marlina A. Elburg
9.1 Geochronology: Principles 235
9.1.1 Single Phase and Isochron Dating 235
9.1.2 Closure Temperature 237
9.2 Practicalities 240
9.2.1 Isobaric Overlap 240
9.2.2 ICP-MS versus TIMS for Geochronology 241
9.3 Various Isotopic Systems 242
9.3.1 U/Th-Pb 242
9.3.1.1 LA–ICP-MS U–Pb Dating of Zircon 244
9.3.1.2 Laser Ablation U/Th-Pb Dating of Other Phases 254
9.3.1.3 Solution Pb–Pb Dating 257
9.3.2 Lu–Hf System 257
9.3.2.1 Lu–Hf Isochrons with Garnet 258
9.3.2.2 Lu–Hf on Phosphates 259
9.3.2.3 Zircon Hf Isotopic Model Ages 259
9.3.3 Re(-Pt)–Os System 261
9.3.3.1 Re–Os Molybdenite Dating 262
9.3.3.2 Re–Os Dating of Black Shales 262
9.3.3.3 Pt-Re–Os on Mantle Peridotites 263
9.4 Systems for Which ICP-MS Analysis Brings Fewer Advantages 265
Acknowledgments 266
References 266
10 Application of Multiple-Collector Inductively Coupled Plasma Mass Spectrometry to Isotopic Analysis in Cosmochemistry 275
Mark Rehka¨mper, Maria Scho¨nba¨chler, and Rasmus Andreasen
10.1 Introduction 275
10.2 Extraterrestrial Samples 276
10.2.1 Introduction 276
10.2.2 Classification of Meteorites 277
10.2.3 Chondritic Meteorites 279
10.2.4 Non-Chondritic Meteorites 281
10.3 Origin of Cosmochemical Isotopic Variations 281
10.3.1 Radiogenic Isotope Variations from the Decay of Long-Lived Radioactive Nuclides 282
10.3.2 Radiogenic Isotope Variations from the Decay of Extinct Radioactive Nuclides 282
10.3.3 Nucleosynthetic Isotope Anomalies 283
10.3.4 Mass-Dependent Isotope Fractionation 284
10.3.5 Cosmogenic Isotope Anomalies 284
10.4 Use of MC-ICP-MS in Cosmochemistry 285
10.4.1 Specific Advantages of MC-ICP-MS 286
10.4.2 Analytical Procedures 287
10.5 Applications of MC-ICP-MS in Cosmochemistry 289
10.5.1 Nucleosynthetic Isotope Anomalies 289
10.5.2 Long-Lived Radioactive Decay Systems 293
10.5.2.1 The 87Rb87Sr Decay System 293
10.5.2.2 The 147Sm143Nd Decay System 293
10.5.2.3 The 176Lu176Hf Decay System 294
10.5.2.4 The U/Th-Pb Decay Systems 295
10.5.3 Extinct Radioactive Decay Systems 297
10.5.4 Stable Isotope Fractionation 300
10.5.5 Cosmogenic Isotope Variations 306
10.6 Conclusion 307
Acknowledgments 308
References 308
11 Establishing the Basis for Using Stable Isotope Ratios of Metals as Paleoredox Proxies 317
Laura E. Wasylenki
11.1 Introduction 317
11.2 Isotope Ratios of Metals as Paleoredox Proxies 319
11.2.1 Molybdenum Isotope Ratios and Global Ocean Paleoredox 320
11.2.2 Cr Isotope Ratios and Paleoredox Conditions of the Atmosphere 329
11.2.3 Uranium Isotope Ratios and Marine Paleoredox 338
11.3 Diagenesis: a Critical Area for Further Work 344
References 346
12 Isotopes as Tracers of Elements Across the Geosphere–Biosphere Interface 351
Kurt Kyser
12.1 Description of the Geosphere–Biosphere Interface 351
12.2 Elements That Typify the Geosphere–Biosphere Interface 354
12.3 Microbes at the Interface 355
12.4 Element Tracing in Environmental Science and Exploration of Metal Deposits 356
12.5 Isotopes as Indicators of Paleoenvironments 360
12.6 Tracing the Geosphere Effect on Vegetation and Animals 360
12.7 Tracing in the Marine Environment 364
12.8 Future Directions 367
References 368
13 Archeometric Applications 373
Patrick Degryse
13.1 Introduction 373
13.2 Current Applications 375
13.2.1 Lead 375
13.2.2 Strontium 377
13.2.2.1 Inorganics: Glass and Iron 377
13.2.2.2 Organics: Skeletal Matter 378
13.2.3 Neodymium 379
13.2.4 Osmium 379
13.3 New Applications 380
13.3.1 Copper 380
13.3.2 Tin 380
13.3.3 Antimony 380
13.3.4 Boron 381
13.4 Conclusion 382
References 382
14 Forensic Applications 391
Mart?´n Resano and Frank Vanhaecke
14.1 Introduction 391
14.1.1 What is Forensics? 391
14.1.2 The Role of ICP-MS in Forensics 391
14.2 Forensic Applications Based on ICP-MS Isotopic Analysis 393
14.2.1 Crime Scene Investigation 393
14.2.2 Nuclear Forensics 396
14.2.3 Food Authentication 399
14.2.4 Monitoring Environmental Pollution 404
14.2.5 Other Applications 408
14.3 Future Outlook 411
Acknowledgments 412
References 412
15 Nuclear Applications 419
Scott C. Szechenyi and Michael E. Ketterer
15.1 Introduction 419
15.2 Rationale 419
15.3 Process Control and Monitoring in the Nuclear Industry 422
15.4 Isotopic Studies of the Distribution of U and Pu in the Environment 424
15.5 Nuclear Forensics 429
15.6 Prospects for Future Developments 431
Acknowledgment 431
References 432
16 The Use of Stable Isotope Techniques for Studying Mineral and Trace Element Metabolism in Humans 435
Thomas Walczyk
16.1 Essential Elements 435
16.2 Stable Isotopic Labels Versus Radiotracers 436
16.3 Quantification of Stable Isotopic Tracers 438
16.4 Isotope Labeling Techniques 442
16.5 Concepts of Using Tracers in Studies of Element Metabolism in Humans 444
16.5.1 Overview 444
16.5.2 Fecal Balance Studies (Single Isotopic Label) 444
16.5.3 Fecal Balance Studies (Double Isotopic Label) 445
16.5.4 Plasma Appearance 446
16.5.5 Urinary Monitoring 447
16.5.6 Compartmental Modeling 447
16.5.7 Tissue Retention 448
16.5.8 Element Turnover Studies 449
16.5.9 Isotope Fractionation Effects 450
16.6 ICP-MS in Stable Isotope-Based Metabolic Studies 451
16.6.1 Measurement Precision 451
16.6.2 Mass Spectrometric Sensitivity 454
16.6.3 Measurement Accuracy and Quality Control 454
16.7 Element-by-Element Review 458
16.7.1 Calcium 458
16.7.2 Iron 462
16.7.3 Zinc 464
16.7.4 Magnesium 469
16.7.5 Selenium 471
16.7.6 Copper 474
16.7.7 Molybdenum 476
Acknowledgments 477
References 478
17 Isotopic Analysis via Multi-Collector Inductively Coupled Plasma Mass Spectrometry in Elemental Speciation 495
Vladimir N. Epov, Sylvain Berail, Christophe Pecheyran, David Amouroux, and Olivier F.X. Donard
17.1 Introduction 495
17.2 Advantage of On-Line versus Off-Line Separation of Elemental Species 497
17.3 Coupling Chromatography with MC-ICP-MS 498
17.3.1 Instrumentation: LC, GC, HPLC, and IC Coupled with MC-ICP-MS 498
17.3.1.1 Liquid Chromatography 500
17.3.1.2 Gas Chromatography 500
17.3.2 Acquisition, Mass Bias Correction, and Data Treatment Strategy 503
17.3.2.1 Signal Acquisition 503
17.3.2.2 Mass Bias Correction 504
17.3.2.3 Data Treatment Strategy 504
17.3.3 Consequences of the Transient Nature of the Signal 507
17.3.3.1 Shape and Width of the Peak 507
17.3.3.2 Drift of the Isotope Ratios During Peak Elution 507
17.4 Environmental and Other Applications 509
17.4.1 Mercury 509
17.4.2 Lead 511
17.4.3 Sulfur 511
17.4.4 Antimony 512
17.4.5 Halogens 512
17.5 Conclusion and Future Trends 513
References 515
Index 519
The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.