Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
Purchase Benefits
Looking to rent a book? Rent Kernel Methods for Remote Sensing Data Analysis [ISBN: 9780470722114] for the semester, quarter, and short term or search our site for other textbooks by Camps-Valls, Gustau; Bruzzone, Lorenzo. Renting a textbook can save you up to 90% from the cost of buying.
Lorenzo Bruzzone received a laurea (M.S.) degree in electronic engineering (summa cum laude) ad a Ph.D. degree in telecommunications from the University of Genoa, Italy, in 1993 and 1998, respectively. From 1998 to 2000 he was a Postdoctoral researcher at the University of Genoa. In 2000 he joined the University of Trento, Italy, where he is currently a Full Professor telecommunications. He teaches remote sensing, pattern recognition, radar and electrical communications. Dr Bruzzone is the Head of the remote Sensing Laboratory in the Department of Information Engineering and Computer Science, University of Trento. His current research interests are in the area of remote-sensing image processing and recognition (analysis of multitemporal data, feature extraction and election, classification, regression and estimation, data fusion and machine learning). He conducts and supervises research on these topics within the frameworks of several national and international projects. He is an Evaluator of project proposals for many different governments (including the European Commission) and scientific organizations. He is the author (or co-author) of 74 scientific publication in referred international journals, more than 140 papers in conference proceedings and 7 book chapters. He is a referee for many international journals and has served on the Scientific Committees of several international conferences. He is a member of the Managing Committee of the Italian Inter-University Consortium on Telecommunications and a member of the Scientific Committee of the India-Italy Center for Advanced Research. Since 2009 he has been a member of the Administrative Committee of the IEEE Geoscience and Remote Sensing Society. Dr Bruzzone gained first place in the Student Prize Paper Competition of the 1998 IEEE International Geoscience and Remote Sensing Symposium (Seattle, July 1998). He was a recipient of the Recognition of IEEE Transactions on Geoscience and remote Sensing Best reviewers in 1999 and was a Guest Editor of a Special Issue of the IEEE Transactions on Geoscience and Remote Sensing on the subject of the analysis of multitemporal remote-sensing images (November 2003). He was the General Chair and Co-chair of the First and Second IEEE International Workshop on the Analysis of Multi-temporal remote-Sensing Images (MultiTemp), and is currently a member of the Permanent Steering Committee of this series of workshops. Since 2003, he has been the Chair of the SPIE Conference on Image and Signal Processing for Remote Sensing. From 2004 to 2006 he served as an Associate Editor for the IEEE Geoscience and Remote Sensing Letters, and currently is an Associate Editor for the IEEE Transactions on Geoscience and Remote Sensing, and the Canadian Journal of Remote Sensing. He is a Senior member of IEEE, and also a member of the International Association for Pattern Recognition and of the Italian Association for Remote Sensing (AIT).
About the Editors | |
List of authors | |
Preface | |
Acknowledgments | |
List of symbols | |
List of abbreviations | |
Introduction | |
Machine learning techniques in remote sensing data analysis | |
Introduction | |
Supervised classification: algorithms and applications | |
Conclusion | |
References | |
An introduction to kernel learning algorithms | |
Introduction | |
Kernels | |
The representer theorem | |
Learning with kernels | |
Conclusion | |
References | |
Supervised image classification | |
The Support Vector Machine (SVM) algorithm for supervised classification of hyperspectral remote sensing data | |
Introduction | |
Aspects of hyperspectral data and its acquisition | |
Hyperspectral remote sensing and supervised classification | |
Mathematical foundations of supervised classification | |
From structural risk minimization to a support vector machine algorithm | |
Benchmark hyperspectral data sets | |
Results | |
Using spatial coherence | |
Why do SVMs perform better than other methods? | |
Conclusions | |
References | |
On training and evaluation of SVM for remote sensing applications | |
Introduction | |
Classification for thematic mapping | |
Overview of classification by a SVM | |
Training stage | |
Testing stage | |
Conclusion | |
References | |
Kernel Fisher's Discriminant with heterogeneous kernels | |
Introduction | |
Linear Fisher's Discriminant | |
Kernel Fisher Discriminant | |
Kernel Fisher's Discriminant with heterogeneous kernels | |
Automatic kernel selection KFD algorithm | |
Numerical results | |
Conclusion | |
References | |
Multi-temporal image classification with kernels | |
Introduction | |
Multi-temporal classification and change detection with kernels | |
Contextual and multi-source data fusion with kernels | |
Multi-temporal/-source urban monitoring | |
Conclusions | |
References | |
Target detection with kernels | |
Introduction | |
Kernel learning theory | |
Linear subspace-based anomaly detectors and their kernel versions | |
Results | |
Conclusion | |
References | |
One-class SVMs for hyperspectral anomaly detection | |
Introduction | |
Deriving the SVDD | |
SVDD function optimization | |
SVDD algorithms for hyperspectral anomaly detection | |
Experimental results | |
Conclusions | |
References | |
Semi-supervised image classification | |
A domain adaptation SVM and a circular validation strategy for land-cover maps updating | |
Introduction | |
Literature survey | |
Proposed domain adaptation SVM | |
Proposed circular validation strategy | |
Experimental results | |
Discussions and conclusion | |
References | |
Mean kernels for semi-supervised remote sensing image classification | |
Introduction | |
Semi-supervised classification with mean kernels | |
Experimental results | |
Conclusions | |
References | |
Function approximation and regression | |
Kernel methods for unmixing hyperspectral imagery | |
Introduction | |
Mixing models | |
Proposed kernel unmixing algorithm | |
Experimental results of the kernel unmixing algorithm | |
Development of physics-based kernels for unmixing | |
Physics-based kernel results | |
Summary | |
References | |
Kernel-based quantitative remote sensing inversion | |
Introduction | |
Typical kernel-based remote sensing inverse problems | |
Well-posedness and ill-posedness | |
Regularization | |
Optimization techniques | |
Kernel-based BRDF model inversion | |
Aerosol particle size distribution function retrieval | |
Conclusion | |
References | |
Land and sea surface temperature estimation by support vector regression | |
Introduction | |
Previous work | |
Methodology | |
Experimental results | |
Conclusions | |
References | |
Kernel-based feature extraction | |
Kernel multivariate analysis in remote sensing feature extraction | |
Introduction | |
Multivariate analysis methods | |
Kernel multivariate analysis | |
Sparse Kernel OPLS | |
Experiments: pixel-based hyperspectral image classification | |
Conclusions | |
References | |
KPCA algorithm for hyperspectral target/anomaly detection | |
Introduction | |
Motivation | |
Kernel-based feature extraction in hyperspectral images | |
Kernel-based target detection in hyperspectral images | |
Kernel-based anomaly detection in hyperspectral images | |
Conclusions | |
References | |
Remote sensing data Classification with kernel nonparametric | |
feature extractions | |
Introduction | |
Related feature extractions | |
Kernel-based NWFE and FLFE | |
Eigenvalue resolution with regularization | |
Experiments | |
Comments and conclusions | |
References | |
Index | |
Table of Contents provided by Publisher. All Rights Reserved. |
The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.