rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780387955513

Kinetic Theory

by
  • ISBN13:

    9780387955513

  • ISBN10:

    0387955518

  • Edition: 3rd
  • Format: Hardcover
  • Copyright: 2003-09-01
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $119.99 Save up to $87.59
  • Digital
    $70.20*
    Add to Cart

    DURATION
    PRICE
    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.

Summary

Kinetic Theory: Classical, Quantum, and Relativistic Descriptions goes beyond the scope of other works in the field with its thorough treatment of applications in a wide variety of disciplines. Its clear exposition and emphasis on concrete examples will make it not only an excellent graduate text but also a valuable resource for researchers in such disciplines as aerospace, mechanical, and chemical engineering; astrophysics, solid state and laser physics and devices, plasma physics, and controlled and thermonuclear fusion.Among the topics covered are:- The Liouville equation and analyses of the Liouville equation, including two independent derivations - The Boltzmann equation and Boltzmann's H-theorem - Analysis of the linearized collision operator- Fluid dynamics and irreversibility- Assorted kinetic equations with applications to plasmas and neutral fluids- Elements of quantum kinetic theory, including the Green's-function formalism and the Wigner-Moyal equation- Relativistic kinetic theory and Lorentz invariants- Kinetic properties of metals and amorphous media- Monte-Carlo analysis in kinetic theory- Kinetic study of shock wavesThis third revised edition features a new section on constants of motion and symmetry and a new appendix on the Lorentz-Legendre expansion.Each chapter concludes with a variety of problems, many of which provide self-contained descriptions of related topics; lists of such "topical problems" are included in the Table of Contents. Numerous appendices supply vector formulas and tensor notation, properties of special functions, physical constants, references, and a historical time chart.

Table of Contents

Preface to the Third Edition ix
1 The Liouville Equation 1(76)
1.1 Elements of Classical Mechanics
2(9)
1.1.1 Generalized Coordinates and the Lagrangian
2(2)
1.1.2 Hamilton's Equations
4(2)
1.1.3 Constants of the Motion
6(1)
1.1.4 F-Space
7(2)
1.1.5 Dynamic Reversibility
9(1)
1.1.6 Equation of Motion for Dynamical Variables
10(1)
1.2 Canonical Transformations
11(6)
1.2.1 Generating Functions
11(3)
1.2.2 Generating Other Transformations
14(1)
1.2.3 Canonical Invariants
15(1)
1.2.4 Group Property of Canonical Transformations
15(1)
1.2.5 Constants of Motion and Symmetry
16(1)
1.3 Liouville Theorem
17(3)
1.3.1 Proof
17(1)
1.3.2 Geometric Significance
18(1)
1.3.3 Action Generates the Motion
19(1)
1.4 Liouville Equation
20(9)
1.4.1 The Ensemble: Density in Phase Space
20(1)
1.4.2 First Interpretation of D(q, p, t)
20(2)
1.4.3 Most General Solution: Second Interpretation of D(q, p, t)
22(1)
1.4.4 Incompressible Ensemble
23(1)
1.4.5 Method of Characteristics
24(1)
1.4.6 Solutions to the Initial-Value Problem
25(2)
1.4.7 Liouville Operator
27(2)
1.5 Eigenfunction Expansions and the Resolvent
29(6)
1.5.1 Liouville Equation Integrating Factor
29(1)
1.5.2 Example: The Ideal Gas
30(2)
1.5.3 Free-Particle Propagator
32(1)
1.5.4 The Resolvent
33(2)
1.6 Distribution Functions
35(6)
1.6.1 Third Interpretation of D(q, p, t)
35(1)
1.6.2 Joint-Probability Distribution
36(1)
1.6.3 Reduced Distributions
37(1)
1.6.4 Conditional Distribution
37(1)
1.6.5 s-Tuple Distribution
38(1)
1.6.6 Symmetric Properties of Distributions
39(2)
1.7 Markov Process
41(6)
1.7.1 Two-Time Distributions
41(1)
1.7.2 Chapman-Kolmogorov Equation
41(2)
1.7.3 Homogeneous Processes in Time
43(1)
1.7.4 Master Equation
43(1)
1.7.5 Application to Random Walk
44(3)
1.8 Central-Limit Theorem
47(13)
1.8.1 Random Variables and the Characteristic Function
47(1)
1.8.2 Expectation, Variance, and the Characteristic Function
47(2)
1.8.3 Sums of Random Variables
49(1)
1.8.4 Application to Random Walk
50(4)
1.8.5 Large n Limit: Central-Limit Theorem
54(1)
1.8.6 Random Walk in Large n Limit
55(2)
1.8.7 Poisson and Gaussian Distributions
57(2)
1.8.8 Covariance and Autocorrelation Function
59(1)
Problems
60(17)
2 Analyses of the Liouville Equation 77(60)
2.1 BBKGY Hierarchy
78(8)
2.1.1 Liouville, Kinetic Energy, and Remainder Operators
78(2)
2.1.2 Reduction of the Liouville Equation
80(1)
2.1.3 Further Symmetry Reductions
81(2)
2.1.4 Conservation of Energy from BY1 and BY2
83(3)
2.2 Correlation Expansions: The Vlasov Limit
86(11)
2.2.1 Nondimensionalization
86(3)
2.2.2 Correlation Functions
89(1)
2.2.3 The Vlasov Limit
90(2)
2.2.4 The Vlasov Equation: Self-Consistent Solution
92(3)
2.2.5 Debye Distance and the Vlasov Limit
95(1)
2.2.6 Radial Distribution Function
96(1)
2.3 Diagrams: Prigogine Analysis
97(18)
2.3.1 Perturbation Liouville Operator
98(1)
2.3.2 Generalized Fourier Series
99(1)
2.3.3 Interpretation of al Coefficients
99(3)
2.3.4 Equations of Motion for a(k) Coefficients
102(1)
2.3.5 Selection Rules for Matrix Elements
103(1)
2.3.6 Properties of Diagrams
104(3)
2.3.7 Long-Time Diagrams: The Boltzmann Equation
107(1)
2.3.8 Reduction of Time Integrals
108(5)
2.3.9 Application of Diagrams to Plasmas
113(2)
2.4 Bogoliubov Hypothesis
115(9)
2.4.1 Time and Length Intervals
115(1)
2.4.2 The Three Temporal Stages
115(2)
2.4.3 Bogoliubov Distributions
117(1)
2.4.4 Density Expansion
117(2)
2.4.5 Construction of F2(0)
119(2)
2.4.6 Derivation of the Boltzmann Equations
121(3)
2.5 Klimontovich Picture
124(3)
2.5.1 Phase Densities
125(1)
2.5.2 Phase Density Averages
125(1)
2.5.3 Relation to Correlation Functions
126(1)
2.5.4 Equation of Motion
127(1)
2.6 Grad's Analysis
127(5)
2.6.1 Liouville Equation Revisited
127(1)
2.6.2 Truncated Distributions
128(1)
2.6.3 Grand's First and Second Equations
129(1)
2.6.4 The Boltzmann Equation
130(2)
Problems
132(5)
3 The Boltzmann Equation, Fluid Dynamics, and Irreversibility 137(141)
3.1 Scattering Concepts
138(11)
3.1.1 Separation of the Hamiltonian
138(2)
3.1.2 Scattering Angle
140(3)
3.1.3 Cross Section
143(3)
3.1.4 Kinematics
146(3)
3.2 The Boltzmann Equation
149(6)
3.2.1 Collisional Parameters and Derivation
149(4)
3.2.2 Multicomponent Gas
153(1)
3.2.3 Representation of Collision Integral for Rigid Spheres
153(2)
3.3 Fluid Dynamic Equations and the Boltzmann H Theorem
155(19)
3.3.1 Collisional Invariants
155(2)
3.3.2 Macroscopic Variables and Conservative Equations
157(2)
3.3.3 Conservation Equations and the Boltzmann Equation
159(2)
3.3.4 Temperance: Variance of the Velocity Distribution
161(1)
3.3.5 Irreversibility
162(1)
3.3.6 Poincaré Recurrence Theorem
163(1)
3.3.7 Boltzmann and Gibbs Entropies
164(2)
3.3.8 Boltzmann's H Theorem
166(1)
3.3.9 Statistical Balance
167(1)
3.3.10 The Maxwellian
168(2)
3.3.11 The Barometer Formula
170(2)
3.3.12 Central-Limit Theorem Revisited
172(2)
3.4 Transport Coefficients
174(20)
3.4.1 Response to Gradient Perturbations
174(4)
3.4.2 Elementary Mean-Free-Path Estimates
178(8)
3.4.3 Diffusion and Random Walk
186(2)
3.4.4 Autocorrelation Functions, Transport Coefficients, and Kubo Formula
188(6)
3.5 The Chapman-Enskog Expansion
194(23)
3.5.1 Collision Frequency
194(1)
3.5.2 The Expansion
195(4)
3.5.3 Second-Order Solution
199(3)
3.5.4 Thermal Conductivity and Stress Tensor
202(1)
3.5.5 Sonine Polynomials
203(4)
3.5.6 Application to Rigid Spheres
207(1)
3.5.7 Diffusion and Electrical Conductivity
208(1)
3.5.8 Expressions of Q(l,q) for Inverse Power Interaction Forces
209(2)
3.5.9 Interaction Models and Experimental Values
211(2)
3.5.10 The Method of Moments
213(4)
3.6 The Linear Boltzmann Collision Operator
217(8)
3.6.1 Symmetry of the Kernel
217(1)
3.6.2 Negative Eigenvalues
218(1)
3.6.3 Comparison of Boltzmann and Liouville Operators
219(1)
3.6.4 Hard and Soft Potentials
220(1)
3.6.5 Maxwell Molecule Spectrum
220(2)
3.6.6 Further Spectral Properties
222(3)
3.7 The Druyvesteyn Distribution
225(15)
3.7.1 Basic Parameters and Starting Equations
225(2)
3.7.2 Legendre Polynomial Expansion
227(5)
3.7.3 Reduction of J^0(f0 | F)
232(1)
3.7.4 Evaluation of I0 and I1 Integrals
233(3)
3.7.5 Druyvesteyn Equation
236(1)
3.7.6 Normalization, Velocity Shift, and Electrical Conductivity
237(3)
3.8 Further Remarks on Irreversibility
240(18)
3.8.1 Ergodic Flow
240(3)
3.8.2 Mixing Flow and Coarse Graining
243(2)
3.8.3 Action-Angle Variables
245(3)
3.8.4 Hamilton-Jacobi Equation
248(1)
3.8.5 Conditionally Periodic Motion and Classical Degeneracy
249(4)
3.8.6 Bruns's Theorem
253(1)
3.8.7 Anharmonic Oscillator
253(2)
3.8.8 Resonant Domains and the KAM Theorem
255(3)
Problems
258(20)
4 Assorted Kinetic Equations with Applications to Plasmas and Neutral Fluids 278(51)
4.1 Application of the Vlasov Equation to a Plasma
279(15)
4.1.1 Debye Potential and Dielectric Constant
279(6)
4.1.2 Waves, Instabilities, and Damping
285(3)
4.1.3 Landau Damping
288(4)
4.1.4 Nyquist Criterion
292(2)
4.2 Further Kinetic Equations of Plasmas and Neutral Fluids
294(25)
4.2.1 Krook-Bhatnager-Gross Equation
295(3)
4.2.2 KBG Analysis of Shock Waves
298(3)
4.2.3 The Fokker-Planck Equation
301(6)
4.2.4 The Landau Equation
307(2)
4.2.5 The Balescu-Lenard Equation
309(6)
4.2.6 Convergent Kinetic Equation
315(2)
4.2.7 Fokker-Planck Equation Revisited
317(2)
4.3 Monte Carlo Analysis in Kinetic Theory
319(6)
4.3.1 Master Equation
319(1)
4.3.2 Equivalence of Master and Integral Equations
320(1)
4.3.3 Interpretation of Terms
321(2)
4.3.4 Application of Random Numbers
323(1)
4.3.5 Program for Evaluation of Distribution Function
324(1)
Problems
325(4)
5 Elements of Quantum Kinetic Theory 329(120)
5.1 Basic Principles
330(11)
5.1.1 The Wave Function and Its Properties
330(2)
5.1.2 Commutators and Measurement
332(2)
5.1.3 Representations
334(1)
5.1.4 Coordinate and Momentum Representations
335(2)
5.1.5 Superposition Principle
337(2)
5.1.6 Statistics and the Pauli Principle
339(1)
5.1.7 Heisenberg Picture
339(2)
5.2 The Density Matrix
341(22)
5.2.1 The Density Operator
342(4)
5.2.2 The Pauli Equation
346(5)
5.2.3 The Wigner Distribution
351(3)
5.2.4 Weyl Correspondence
354(3)
5.2.5 Wigner-Moya1 Equation
357(2)
5.2.6 Homogeneous Limit: Pauli Equation Revisited
359(4)
5.3 Application of the KBG Equation to Quantum Systems
363(22)
5.3.1 Equilibrium Distributions
363(3)
5.3.2 Photon Kinetic Equation
366(3)
5.3.3 Electron Transport in Metals
369(7)
5.3.4 Thomas-Fermi Screening
376(2)
5.3.5 Mott Transition
378(1)
5.3.6 Relaxation Time for Charge-Carrier Phonon Interaction
379(6)
5.4 Quantum Modifications of the Boltzmann Equation
385(9)
5.4.1 Quasi-Classical Boltzmann Equation
385(2)
5.4.2 Kinetic Theory for Excitations in a Fermi Liquid
387(5)
5.4.3 H Theorem for Quasi-Classical Distribution
392(2)
5.5 Overview of Classical and Quantum Hierarchies
394(9)
5.5.1 Second Quantization and Fock Space
394(1)
5.5.2 Classical and Quantum Distribution Functions
395(4)
5.5.3 Equations of Motion
399(1)
5.5.4 Generalized Hierarchies
400(3)
5.6 Kubo Formula Revisited
403(5)
5.6.1 Charge Density and Current
403(1)
5.6.2 Identifications for Kubo Formula
404(1)
5.6.3 Electrical Conductivity
405(2)
5.6.4 Reduction to Drude Conductivity
407(1)
5.7 Elements of the Green's Function Formalism
408(13)
5.7.1 Schrödinger Equation Green's Function
408(2)
5.7.2 The s-Body Green's Function
410(1)
5.7.3 Averages and the Green's Function
410(3)
5.7.4 The Quasi-Free Particle
413(1)
5.7.5 One-Body Green's Function
414(1)
5.7.6 Retarded and Advanced Green's Functions
415(1)
5.7.7 Coupled Green's Function Equations
415(1)
5.7.8 Diagrams and Expansion Techniques
416(5)
5.8 Spectral Function for Electron-Phonon Interactions
421(8)
5.8.1 Hamiltonian
421(2)
5.8.2 Green's Function Equations of Motion
423(2)
5.8.3 The Spectral Function
425(1)
5.8.4 Lorentzian Form
426(2)
5.8.5 Lifetime and Energy of a Quasi-Free Particle
428(1)
Problems
429(20)
6 Relativistic Kinetic Theory 449(31)
6.1 Preliminaries
450(6)
6.1.1 Postulates
450(1)
6.1.2 Events, World Lines, and the Light Cone
450(1)
6.1.3 Four-Vectors
451(1)
6.1.4 Lorentz Transformation
452(2)
6.1.5 Length Contraction, Time Dilation, and Proper Time
454(1)
6.1.6 Covariance, Hamiltonian, and Hamilton's Equations
454(1)
6.1.7 Criterion for Relativistic Analysis
455(1)
6.2 Covariant Kinetic Formulation
456(11)
6.2.1 Distribution Function
456(1)
6.2.2 One-Particle Liouville Equation
457(1)
6.2.3 Covariant Electrodynamics
458(1)
6.2.4 Vlasov Equation
459(1)
6.2.5 Covariant Drude Formulation of Ohm's Law
460(1)
6.2.6 Lorentz Invariants in Kinetic Theory
461(3)
6.2.7 Relativistic Electron Gas and Darwin Lagrangian
464(3)
6.3 The Relativistic Maxwellian
467(3)
6.3.1 Normalization
467(2)
6.3.2 The Nonrelativistic Domain
469(1)
6.4 Non-Cartesian Coordinates
470(4)
6.4.1 Covariant and Contravariant Vectors
470(1)
6.4.2 Metric Tensor
471(1)
6.4.3 Lagrange's Equations
472(1)
6.4.4 The Christoffel Symbol
473(1)
6.4.5 Liouville Equation
474(1)
Problems
474(6)
7 Kinetic Properties of Metals and Amorphous Media 480(47)
7.1 Metallic Electrical and Thermal Conduction
482(23)
7.1.1 Background
482(2)
7.1.2 Thermopower
484(3)
7.1.3 Electron-Phonon Scattering Matrix Elements
487(6)
7.1.4 Quantum Boltzmann Equation
493(3)
7.1.5 Perturbation Distribution
496(2)
7.1.6 Electrical Resistivity
498(5)
7.1.7 Scale Parameters of Po
503(1)
7.1.8 Electron Distribution Function
504(1)
7.1.9 Thermal Conductivity
504(1)
7.2 Amorphous Media
505(19)
7.2.1 Background
505(3)
7.2.2 Localization
508(3)
7.2.3 Conduction Mechanisms and Hopping
511(3)
7.2.4 Percolation Phenomena
514(3)
7.2.5 Pair-Connectedness Function and Scaling
517(3)
7.2.6 Localization in Second Quantization
520(4)
Problems
524(3)
Location of Key Equations 527(2)
List of Symbols 529(8)
Appendices
A Vector Formulas and Tensor Notation
537(4)
A.1 Definitions
537(2)
A.2 Vector Formulas and Tensor Equivalents
539(2)
B Mathematical Formulas
541(9)
B.1 Tensor Integrals and Unit Vector Products
541(1)
B.2 Exponential Integral, T Function, ζ Function, and Error Function
542(3)
B.2.1 Exponential Integral
542(3)
B.3 Other Useful Integrals
545(1)
B.4 Hermite and Laguerre Polynomials and the Hypergeometric Function
546(4)
C Physical Constants
550(2)
D Lorentz-Legendre Expansion
552(2)
E Additional References
554(9)
E.1 Early Works
554(4)
E.2 Recent Contributions to Kinetic Theory and Allied Topics
558(5)
F Science and Society in the Classical Greek and Roman Eras
563(2)
Index 565

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program