did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780521484039

Lasers and Electro-optics: Fundamentals and Engineering

by
  • ISBN13:

    9780521484039

  • ISBN10:

    0521484030

  • Format: Paperback
  • Copyright: 1996-05-31
  • Publisher: Cambridge University Press
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $159.00

Summary

This comprehensive textbook provides a detailed introduction to the basic physics and engineering aspects of lasers, as well as to the design and operational principles of a wide range of optical systems and electro-optic devices. Throughout, full details of important derivations and results are given, as are many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices. Covering a broad range of topics in modern optical physics and engineering, this book will be invaluable to those taking undergraduate courses in laser physics, optoelectronics, photonics and optical engineering. It will also act as a useful reference for graduate students and researchers in these fields.

Table of Contents

Preface xix
1 Spontaneous and Stimulated Transitions
1(21)
1.1 Introduction
1(1)
1.2 Why `Quantum' Electronics?
1(2)
1.3 Amplification at Optical Frequencies
3(4)
1.3.1 Spontaneous Emission
4(2)
1.3.2 Stimulated Emission
6(1)
1.4 The Relation Between Energy Density and Intensity
7(4)
1.4.1 Stimulated Absorption
10(1)
1.5 Intensity of a Beam of Electromagnetic Radiation in Terms of Photon Flux
11(1)
1.6 Black-Body Radiation
11(5)
1.7 Relation Between the Einstein A and B Coefficients
16(2)
1.8 The Effect of Level Degeneracy
18(1)
1.9 Ratio of Spontaneous and Stimulated Transitions
19(1)
1.10 Problems
20(2)
2 Optical Frequency Amplifiers
22(35)
2.1 Introduction
22(1)
2.2 Homogeneous Line Broadening
22(4)
2.2.1 Natural Broadening
22(4)
2.3 Inhomogeneous Broadening
26(4)
2.3.1 Doppler Broadening
27(3)
2.4 Optical Frequency Amplification with a Homogeneously Broadened Transition
30(4)
2.4.1 The Stimulated Emission Rate in a Homogeneously Broadened System
33(1)
2.5 Optical Frequency Amplification with Inhomogeneous Broadening Included
34(1)
2.6 Optical Frequency Oscillation -- Saturation
35(9)
2.6.1 Homogeneous Systems
35(3)
2.6.2 Inhomogeneous Systems
38(6)
2.7 Power Output from a Laser Amplifier
44(1)
2.8 The Electron Oscillator Model of a Radiative Transition
45(4)
2.9 What Are the Physical Significances of X' and X"?
49(3)
2.10 The Classical Oscillator Explanation for Stimulated Emission
52(2)
2.11 Problems
54(1)
References
55(2)
3 Introduction to Two Practical Laser Systems
57(11)
3.1 Introduction
57(6)
3.1.1 The Ruby Laser
57(6)
3.2 The Helium-Neon Laser
63(4)
References
67(1)
4 Passive Optical Resonators
68(20)
4.1 Introduction
68(1)
4.2 Preliminary Consideration of Optical Resonators
68(2)
4.3 Calculation of the Energy Stored in an Optical Resonator
70(2)
4.4 Quality Factor of a Resonator in Terms of the Transmission of its End Reflectors
72(1)
4.5 Fabry-Perot Etalons and Interferometers
73(6)
4.6 Internal Field Strength
79(2)
4.7 Fabry-Perot Interferometers as Optical Spectrum Analyzers
81(5)
4.7.1 Example
84(2)
4.8 Problems
86(1)
References
87(1)
5 Optical Resonators Containing Amplifying Media
88(20)
5.1 Introduction
88(1)
5.2 Fabry-Perot Resonator Containing an Amplifying Medium
88(4)
5.2.1 Threshold Population Inversion -- Numerical Example
91(1)
5.3 The Oscillation Frequency
92(1)
5.4 Multimode Laser Oscillation
93(6)
5.5 Mode-Beating
99(2)
5.6 The Power Output of a Laser
101(4)
5.7 Optimum Coupling
105(1)
5.8 Problems
106(1)
References
107(1)
6 Laser Radiation
108(18)
6.1 Introduction
108(1)
6.2 Diffraction
108(2)
6.3 Two Parallel Narrow Slits
110(1)
6.4 Single Slit
110(1)
6.5 Two-Dimensional Apertures
111(2)
6.5.1 Circular Aperture
111(2)
6.6 Laser Modes
113(4)
6.7 Beam Divergence
117(1)
6.8 Linewidth of Laser Radiation
118(1)
6.9 Coherence Properties
119(2)
6.10 Interference
121(3)
6.11 Problems
124(1)
References
124(2)
7 Control of Laser Oscillators
126(15)
7.1 Introduction
126(1)
7.2 Multimode Operation
126(1)
7.3 Single Longitudinal Mode Operation
127(4)
7.4 Mode-Locking
131(3)
7.5 Methods of Mode-Locking
134(4)
7.5.1 Active Mode-Locking
134(4)
7.6 Pulse Compression
138(1)
References
139(2)
8 Optically Pumped Solid-State Lasers
141(44)
8.1 Introduction
141(1)
8.2 Optical Pumping in Three- and Four-Level Lasers
141(3)
8.2.1 Effective Lifetime of the Levels Involved
141(1)
8.2.2 Threshold Inversion in Three- and Four-Level Lasers
142(1)
8.2.3 Quantum Efficiency
143(1)
8.2.4 Pumping Power
143(1)
8.2.5 Threshold Lamp Power
144(1)
8.3 Pulsed Versus CW Operation
144(2)
8.3.1 Threshold for Pulsed Operation of a Ruby Laser
145(1)
8.3.2 Threshold for CW Operation of a Ruby Laser
145(1)
8.4 Threshold Population Inversion and Stimulated Emission Cross-Section
146(1)
8.5 Paramagnetic Ion Solid-State Lasers
147(1)
8.6 The Nd: YAG Laser
147(7)
8.6.1 Effective Spontaneous Emission Coefficient
152(1)
8.6.2 Example -- Threshold Pump Energy of a Pulsed Nd: YAG Laser
153(1)
8.7 CW Operation of the Nd: YAG Laser
154(1)
8.8 The Nd^(3+) Glass Laser
154(5)
8.9 Geometrical Arrangements for Optical Pumping
159(7)
8.9.1 Axisymmetric Optical Pumping of a Cylindrical Rod
159(7)
8.10 High Power Pulsed Solid-State Lasers
166(1)
8.11 Diode-Pumped Solid-State Lasers
167(1)
8.12 Relaxation Oscillations (Spiking)
168(2)
8.13 Rate Equations for Relaxation Oscillation
170(4)
8.14 Undamped Relaxation Oscillations
174(1)
8.15 Giant Pulse (Q-Switched) Lasers
175(4)
8.16 Theoretical Description of the Q-Switching Process
179(4)
8.16.1 Example Calculation of Q-Switched Pulse Characteristics
182(1)
8.17 Problems
183(1)
References
183(2)
9 Gas Lasers
185(22)
9.1 Introduction
185(1)
9.2 Optical Pumping
185(2)
9.3 Electron Impact Excitation
187(1)
9.4 The Argon Ion Laser
188(2)
9.5 Pumping Saturation in Gas Laser Systems
190(1)
9.6 Pulsed Ion Lasers
191(1)
9.7 CW Ion Lasers
192(4)
9.8 `Metal' Vapor Ion Lasers
196(3)
9.9 Gas Discharges for Exciting Gas Lasers
199(2)
9.10 Rate Equations for Gas Discharge Lasers
201(3)
9.11 Problems
204(1)
References
205(2)
10 Molecular Gas Lasers I
207(18)
10.1 Introduction
207(1)
10.2 The Energy Levels of Molecules
207(5)
10.3 Vibrations of a Polyatomic Molecule
212(2)
10.4 Rotational Energy States
214(1)
10.5 Rotational Populations
214(2)
10.6 The Overall Energy State of a Molecule
216(1)
10.7 The Carbon Dioxide Laser
217(5)
10.8 The Carbon Monoxide Laser
222(2)
10.9 Other Gas Discharge Molecular Lasers
224(1)
References
224(1)
11 Molecular Gas Lasers II
225(23)
11.1 Introduction
225(1)
11.2 Gas Transport Lasers
225(3)
11.3 Gas Dynamic Lasers
228(4)
11.4 High Pressure Pulsed Gas Lasers
232(6)
11.5 Ultraviolet Molecular Gas Lasers
238(3)
11.6 Photodissociation Lasers
241(1)
11.7 Chemical Lasers
241(3)
11.8 Far-Infrared Lasers
244(1)
11.9 Problems
244(2)
References
246(2)
12 Tunable Lasers
248(19)
12.1 Introduction
248(1)
12.2 Organic Dye Lasers
248(5)
12.2.1 Energy Level Structure
248(3)
12.2.2 Pulsed Laser Excitation
251(1)
12.2.3 CW Dye Laser Operation
252(1)
12.3 Calculation of Threshold Pump Power in Dye Lasers
253(7)
12.3.1 Pulsed Operation
256(3)
12.3.2 CW Operation
259(1)
12.4 Inorganic Liquid Lasers
260(1)
12.5 Free Electron Lasers
260(6)
12.6 Problems
266(1)
References
266(1)
13 Semiconductor Lasers
267(45)
13.1 Introduction
267(1)
13.2 Semiconductor Physics Background
267(4)
13.3 Carrier Concentrations
271(3)
13.4 Intrinsic and Extrinsic Semiconductors
274(1)
13.5 The p-n Junction
275(5)
13.6 Recombination and Luminescence
280(5)
13.6.1 The Spectrum of Recombination Radiation
281(2)
13.6.2 External Quantum Efficiency
283(2)
13.7 Heterojunctions
285(5)
13.7.1 Ternary and Quaternary Lattice-Matched Materials
285(1)
13.7.2 Energy Barriers and Rectification
286(1)
13.7.3 The Double Heterostructure
286(4)
13.8 Semiconductor Lasers
290(2)
13.9 The Gain Coefficient of a Semiconductor Laser
292(3)
13.9.1 Estimation of Semiconductor Laser Gain
293(2)
13.10 Threshold Current and Power-Voltage Characteristics
295(1)
13.11 Longitudinal and Transverse Modes
296(1)
13.12 Semiconductor Laser Structures
297(7)
13.12.1 Distributed Feedback (DFB) and Distributed Bragg Reflection (DBR) Lasers
299(5)
13.13 Surface Emitting Lasers
304(2)
13.14 Laser Diode Arrays and Broad Area Lasers
306(1)
13.15 Quantum Well Lasers
307(3)
13.16 Problems
310(1)
References
311(1)
14 Analysis of Optical Systems I
312(25)
14.1 Introduction
312(1)
14.2 The Propagation of Rays and Waves through Isotropic Media
312(1)
14.3 Simple Reflection and Refraction Analysis
313(3)
14.4 Paraxial Ray Analysis
316(11)
14.4.1 Matrix Formulation
316(8)
14.4.2 Ray Tracing
324(1)
14.4.3 Imaging and Magnification
325(2)
14.5 The Use of Impedances in Optics
327(8)
14.5.1 Reflectance for Waves Incident on an Interface at Oblique Angles
331(1)
14.5.2 Brewster's Angle
332(1)
14.5.3 Transformation of Impedance through Multilayer Optical Systems
332(2)
14.5.4 Polarization Changes
334(1)
14.6 Problems
335(1)
References
336(1)
15 Analysis of Optical Systems II
337(11)
15.1 Introduction
337(1)
15.2 Periodic Optical Systems
337(2)
15.3 The Identical Thin Lens Waveguide
339(1)
15.4 The Propagation of Rays in Mirror Resonators
340(2)
15.5 The Propagation of Rays in Isotropic Media
342(4)
15.6 The Propagation of Spherical Waves
346(1)
15.7 Problems
347(1)
References
347(1)
16 Optics of Gaussian Beams
348(39)
16.1 Introduction
348(1)
16.2 Beam-Like Solutions of the Wave Equation
348(6)
16.3 Higher Order Modes
354(3)
16.3.1 Beam Modes with Cartesian Symmetry
354(1)
16.3.2 Cylindrically Symmetric Higher Order Beams
355(2)
16.4 The Transformation of a Gaussian Beam by a Lens
357(14)
16.5 Transformation of a Gaussian Beams by General Optical Systems
371(1)
16.6 Gaussian Beams in Lens Waveguides
371(1)
16.7 The Propagation of a Gaussian Beam in a Medium with a Quadratic Refractive Index Profile
372(1)
16.8 The Propagation of Gaussian Beams in Media with Spatial Gain or Absorption Variations
372(1)
16.9 Propagation in a Medium with a Parabolic Gain Profile
373(2)
16.10 Gaussian Beams in Plane and Spherical Mirror Resonators
375(2)
16.11 Symmetrical Resonators
377(2)
16.12 An Example of Resonator Design
379(2)
16.13 Diffraction Losses
381(1)
16.14 Unstable Resonators
382(2)
16.15 Problems
384(2)
References
386(1)
17 Optical Fibers and Waveguides
387(51)
17.1 Introduction
387(1)
17.2 Ray Theory of Cylindrical Optical Fibers
387(8)
17.2.1 Meridional Rays in a Step-Index Fiber
387(3)
17.2.2 Step-Index Fibers
390(2)
17.2.3 Graded-Index Fibers
392(1)
17.2.4 Bound, Refracting, and Tunnelling Rays
393(2)
17.3 Ray Theory of a Dielectric Slab Guide
395(2)
17.4 The Goos-Hanchen Shift
397(2)
17.5 Wave Theory of the Dielectric Slab Guide
399(1)
17.6 P-Waves in the Slab Guide
400(4)
17.7 Dispersion Curves and Field Distributions in a Slab Waveguide
404(2)
17.8 S-Waves in the Slab Guide
406(1)
17.9 Practical Slab Guide Geometries
407(1)
17.10 Cylindrical Dielectric Waveguides
408(7)
17.10.1 Fields in the Core
413(1)
17.10.2 Fields in the Cladding
414(1)
17.10.3 Boundary Conditions
414(1)
17.11 Modes and Field Patterns
415(1)
17.12 The Weakly-Guiding Approximation
416(1)
17.13 Mode Patterns
417(2)
17.14 Cutoff Frequencies
419(4)
17.14.1 Example
421(2)
17.15 Multimode Fibers
423(1)
17.16 Fabrication of Optical Fibers
423(2)
17.17 Dispersion in Optical Fibers
425(5)
17.17.1 Material Dispersion
427(1)
17.17.2 Waveguide Dispersion
428(2)
17.18 Solitons
430(1)
17.19 Erbium-Doped Fiber Amplifiers
430(3)
17.20 Coupling Optical Sources and Detectors to Fibers
433(2)
17.20.1 Fiber Connectors
434(1)
17.21 Problems
435(2)
References
437(1)
18 Optics of Anisotropic Media
438(34)
18.1 Introduction
438(1)
18.2 The Dielectric Tensor
438(2)
18.3 Stored Electromagnetic Energy in Anisotropic Media
440(1)
18.4 Propagation of Monochromatic Plane Waves in Anisotropic Media
441(2)
18.5 The Two Possible Directions of D for a Given Wave Vector are Orthogonal
443(1)
18.6 Angular Relationships between D, E, H, k, and the Poynting Vector S
444(2)
18.7 The Indicatrix
446(2)
18.8 Uniaxial Crystals
448(2)
18.9 Index Surfaces
450(2)
18.10 Other Surfaces Related to the Uniaxial Indicatrix
452(1)
18.11 Huygenian Constructions
453(4)
18.12 Retardation
457(4)
18.13 Biaxial Crystals
461(3)
18.14 Intensity Transmission Through Polarizer/Waveplate/Polarizer Combinations
464(1)
18.14.1 Examples
465(1)
18.15 The Jones Calculus
465(5)
18.15.1 The Jones Vector
466(1)
18.15.2 The Jones Matrix
467(3)
18.16 Problems
470(1)
References
471(1)
19 The Electro-Optic and Acousto-Optic Effects and Modulation of Light Beams
472(36)
19.1 Introduction to the Electro-Optic Effect
472(1)
19.2 The Linear Electro-Optic Effect
472(7)
19.3 The Quadratic Electro-Optic Effect
479(1)
19.4 Longitudinal Electro-Optic Modulation
480(2)
19.5 Transverse Electro-optic Modulation
482(4)
19.6 Electro-Optic Amplitude Modulation
486(2)
19.7 Electro-Optic Phase Modulation
488(1)
19.8 High Frequency Waveguide Electro-Optic Modulators
489(4)
19.8.1 Straight Electrode Modulator
490(3)
19.9 Other High Frequency Electro-Optic Devices
493(2)
19.10 Electro-Optic Beam Deflectors
495(1)
19.11 Acousto-Optic Modulators
495(7)
19.12 Applications of Acousto-Optic Modulators
502(2)
19.12.1 Diffraction Efficiency of TeO(2)
502(1)
19.12.2 Acousto-Optic Modulators
502(1)
19.12.3 Acousto-Optic Beam Deflectors and Scanners
503(1)
19.12.4 RF Spectrum Analysis
504(1)
19.13 Construction and Materials for Acousto-Optic Modulators
504(3)
19.14 Problems
507(1)
References
507(1)
20 Introduction to Nonlinear Processes
508(16)
20.1 Introduction
508(1)
20.2 Anharmonic Potentials and Nonlinear Polarization
508(4)
20.3 Nonlinear Susceptibilities and Mixing Coefficients
512(2)
20.4 Second Harmonic Generation
514(2)
20.4.1 Symmetries and Kleinman's Conjecture
516(1)
20.5 The Linear Electro-Optic Effect
516(1)
20.6 Parametric and Other Nonlinear Processes
517(1)
20.7 Macroscopic and Microscopic Susceptibilities
518(4)
20.8 Problems
522(1)
References
522(2)
21 Wave Propagation in Nonlinear Media
524(37)
21.1 Introduction
524(1)
21.2 Electromagnetic Waves and Nonlinear Polarization
524(4)
21.3 Second Harmonic Generation
528(2)
21.4 The Effective Nonlinear Coefficient d(eff)
530(2)
21.5 Phase Matching
532(3)
21.5.1 Second Harmonic Generation
533(1)
21.5.2 Example
533(2)
21.5.3 Phase Matching in Sum-Frequency Generation
535(1)
21.6 Beam Walk-Off and 90 Degree Phase Matching
535(1)
21.7 Second Harmonic Generation with Gaussian Beams
536(5)
21.7.1 Intracavity SHG
537(1)
21.7.2 External SHG
538(1)
21.7.3 The Effects of Depletion on Second Harmonic Generation
538(3)
21.8 Up-Conversion and Difference-Frequency Generation
541(1)
21.9 Optical Parametric Amplification
542(3)
21.9.1 Example
544(1)
21.10 Parametric Oscillators
545(3)
21.10.1 Example
547(1)
21.11 Parametric Oscillator Tuning
548(2)
21.12 Phase Conjugation
550(4)
21.12.1 Phase Conjugation in CS(2)
553(1)
21.13 Optical Bistability
554(3)
21.14 Practical Details of the Use of Crystals for Nonlinear Applications
557(1)
21.15 Problems
558(1)
References
559(2)
22 Detection of Optical Radiation
561(46)
22.1 Introduction
561(1)
22.2 Noise
561(7)
22.2.1 Shot Noise
561(3)
22.2.2 Johnson Noise
564(3)
22.2.3 Generation-Recombination Noise and 1/f Noise
567(1)
22.3 Detector Performance Parameters
568(2)
22.3.1 Noise Equivalent Power
568(1)
22.3.2 Detectivity
569(1)
22.3.3 Frequency Response and Time Constant
569(1)
22.4 Practical Characteristics of Optical Detectors
570(19)
22.4.1 Photoemissive Detectors
570(6)
22.4.2 Photoconductive Detectors
576(6)
22.4.3 Photovoltaic Detectors (Photodiodes)
582(4)
22.4.4 p-i-n Photodiodes
586(1)
22.4.5 Avalanche Photodiodes
587(2)
22.5 Thermal Detectors
589(2)
22.6 Detection Limits for Optical Detector Systems
591(7)
22.6.1 Noise in Photomultipliers
592(1)
22.6.2 Photon Counting
593(1)
22.6.3 Signal-to-Noise Ratio in Direct Detection
594(1)
22.6.4 Direct Detection with p-i-n Photodiodes
595(2)
22.6.5 Direct Detection with APDs
597(1)
22.7 Coherent Detection
598(5)
22.8 Bit-Error Rate
603(2)
References
605(2)
23 Coherence Theory
607(40)
23.1 Introduction
607(1)
23.2 Square-Law Detectors
607(1)
23.3 The Analytic Signal
608(3)
23.3.1 Hilbert Transforms
610(1)
23.4 Correlation Functions
611(3)
23.5 Temporal and Spatial Coherence
614(4)
23.6 Spatial Coherence
618(2)
23.7 Spatial Coherence with an Extended Source
620(2)
23.8 Propagation Laws of Partial Coherence
622(3)
23.9 Propagation from a Finite Plane Surface
625(5)
23.10 van Cittert-Zernike Theorem
630(2)
23.11 Spatial Coherence of a Quasi-Monochromatic, Uniform, Spatially Incoherent Circular Source
632(2)
23.12 Intensity Correlation Interferometry
634(1)
23.13 Intensity Fluctuations
635(3)
23.14 Photon Statistics
638(5)
23.14.1 Constant Intensity Source
639(1)
23.14.2 Random Intensities
640(3)
23.15 The Hanbury-Brown-Twiss Interferometer
643(2)
23.16 Hanbury-Brown-Twiss Experiment with Photon Count Correlations
645(1)
References
646(1)
24 Laser Applications
647(29)
24.1 Optical Communication Systems
647(9)
24.1.1 Introduction
647(2)
24.1.2 Absorption in Optical Fibers
649(1)
24.1.3 Optical Communication Networks
650(1)
24.1.4 Optical Fiber Network Architectures
651(2)
24.1.5 Coding Schemes in Optical Networks
653(1)
24.1.6 Line-of-Sight Optical Links
654(2)
24.2 Holography
656(8)
24.2.1 Wavefront Reconstruction
656(4)
24.2.2 The Hologram as a Diffraction Grating
660(1)
24.2.3 Volume Holograms
661(3)
24.3 Laser Isotope Separation
664(5)
24.4 Laser Plasma Generation and Fusion
669(2)
24.5 Medical Applications of Lasers
671(2)
24.5.1 Laser Angioplasty
673(1)
References
673(3)
Appendix 1 Optical Terminology 676(3)
Appendix 2 The delta-Function 679(2)
Appendix 3 Black-Body Radiation Formulas 681(2)
Appendix 4 RLC Circuit 683(3)
A4.1 Analysis of a Driven RLC Circuit 683(3)
Appendix 5 Storage and Transport of Energy by Electromagnetic Fields 686(3)
Appendix 6 The Reflection and Refraction of a Plane Electromagnetic Wave at the Boundary Between Two Isotropic Media of Different Refractive Index 689(3)
Appendix 7 The Vector Differential Equation for Light Rays 692(3)
Appendix 8 Symmetry Properties of Crystals and the 32 Crystal Classes 695(3)
A8.1 Class 6mm 696(1)
A8.2 Class 42m 696(1)
A8.3 Class 222 697(1)
Appendix 9 Tensors 698(3)
Appendix 10 Bessel Function Relations 701(1)
Appendix 11 Green's Functions 702(3)
Appendix 12 Recommended Values of Some Physical Constants 705(1)
Index 706

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program