Linear Algebra with Applications

  • ISBN13:


  • ISBN10:


  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2016-12-15
  • Publisher: W. H. Freeman

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $31.50
    Check/Direct Deposit: $30.00
List Price: $192.25 Save up to $150.46
  • Rent Book $86.51
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


Holt's Linear Algebra with Applications, Second Edition, blends computational and conceptual topics throughout to prepare students for the rigors of conceptual thinking in an abstract setting. The early treatment of conceptual topics in the context of Euclidean space gives students more time, and a familiar setting, in which to absorb them. This organization also makes it possible to treat eigenvalues and eigenvectors earlier than in most texts. Abstract vector spaces are introduced later, once students have developed a solid conceptual foundation.
Concepts and topics are frequently accompanied by applications to provide context and motivation. Because many students learn by example, Linear Algebra with Applications provides a large number of representative examples, over and above those used to introduce topics. The text also has over 2500 exercises, covering computational and conceptual topics over a range of difficulty levels.

Author Biography

Jeff Holt has a B.A. from Humboldt State University and a Ph.D. from the University of Texas. He has been teaching mathematics for over 20 years, the last eleven at the University of Virginia. He currently has a joint appointment in the Department of Mathematics and the Department of Statistics at UVA.
During his career, Holt has won several awards for teaching. He has had NSF grants to support student math and science scholarships, the implementation of a computer-based homework system, and the development of an innovative undergraduate number theory course which later was turned into the text, Discovering Number Theory, coauthored with John Jones. In his spare time he enjoys lowering the value of his house with do-it-yourself home-improvement projects.

Table of Contents

1. Systems of Linear Equations
1.1 Lines and Linear Equations
1.2 Linear Systems and Matrices
1.3 Applications of Linear Systems
1.4 Numerical Solutions
2. Euclidean Space
2.1 Vectors
2.2 Span
2.3 Linear Independence
3. Matrices
3.1 Linear Transformations
3.2 Matrix Algebra
3.3 Inverses
3.4 LU Factorization
3.5 Markov Chains
4. Subspaces
4.1 Introduction to Subspaces
4.2 Basis and Dimension
4.3 Row and Column Spaces
4.4 Change of Basis
5. Determinants
 5.1 The Determinant Function
5.2 Properties of the Determinant
5.3 Applications of the Determinant
6. Eigenvalues and Eigenvectors
6.1 Eigenvalues and Eigenvectors
6.2 Diagonalization
6.3 Complex Eigenvalues and Eigenvectors
6.4 Systems of Differential Equations
6.5 Approximation Methods
7. Vector Spaces
7.1 Vector Spaces and Subspaces
7.2 Span and Linear Independence
7.3 Basis and Dimension
8. Orthogonality
8.1 Dot Products and Orthogonal Sets
8.2 Projection and the Gram-Schmidt Process
8.3 Diagonalizing Symmetric Matrices and QR Factorization
8.4 The Singular Value Decomposition
8.5 Least Squares Regression
9. Linear Transformations
9.1 Definition and Properties
9.2 Isomorphisms
9.3 The Matrix of a Linear Transformation
9.4 Similarity
10. Inner Product Spaces
10.1 Inner Products
10.2 The Gram-Schmidt Process Revisited
10.3 Applications of Inner Products
11. Additional Topics and Applications
11.1 Quadratic Forms
11.2 Positive Definite Matrices
11.3 Constrained Optimization
11.4 Complex Vector Spaces
11.5 Hermitian Matrices
Answers to Selected Exercises

Rewards Program

Write a Review