did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780138978020

Machine Design

by
  • ISBN13:

    9780138978020

  • ISBN10:

    0138978026

  • Edition: CD
  • Format: Hardcover
  • Copyright: 1997-09-01
  • Publisher: Pearson College Div

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $105.00 Save up to $26.25
  • Rent Book $94.76
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 2-3 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

"Machine Design "presents the subject matter in an up-to-date and thorough manner with a strong design emphasis. This textbook emphasizes both failure theory and analysis as well as emphasizing the synthesis and design aspects of machine elements. The book points out the commonality of the analytical approaches needed to design a wide variety of elements and emphasizes the use of computer-aided engineering as an approach to the design and analysis of these classes of problems. About 100 new problems will be added throughout the book, and certain topics are updated and enhanced.

Table of Contents

PREFACE XVII
PART I FUNDAMENTALS 1(534)
CHAPTER 1 INTRODUCTION TO DESIGN
3(54)
1.1 Design
3(3)
Machine Design
3(1)
Machine
4(1)
Iteration
5(1)
1.2 A Design Process
6(2)
1.3 Problem Formulation and Calculation
8(2)
Definition Stage
9(1)
Preliminary Design Stage
9(1)
Detailed Design Stage
10(1)
Documentation Stage
10(1)
1.4 The Engineering Model
10(2)
Estimation and First-Order Analysis
10(1)
The Engineering Sketch
11(1)
1.5 Computer-Aided Design and Engineering
12(5)
Computer-Aided Design (CAD)
12(4)
Computer-Aided Engineering (CAE)
16(1)
Computational Accuracy
17(1)
1.6 The Engineering Report
17(1)
1.7 Factors of Safety and Design Codes
18(4)
Factor of Safety
18(1)
Choosing a Safety Factor
19(2)
Design and Safety Codes
21(1)
1.8 Statistical Considerations
22(1)
1.9 Units
23(5)
Example 1-1
25(3)
1.10 Introduction to TKSolver
28(25)
Terminology
29(1)
Simple Models, Rule and Variable Sheets, Subsheets
29(3)
Example 1-2
29(3)
Switching Variables from Input to Output and Vice Versa
32(1)
Example 1-3
32(1)
Using Iteration and Root Finding
33(3)
Example 1-4
33(3)
Lists, Tables, Plots, Optimization, and Built-In Functions
36(3)
Example 1-5
36(3)
Using Built-In Functions
39(2)
Example 1-6
39(2)
User-Defined Functions
41(1)
Rule Functions
42(3)
Example 1-7
42(3)
Procedure Functions
45(2)
Example 1-8
45(2)
List Functions
47(2)
Example 1-9
48(1)
Units and Formatting
49(4)
Example 1-10
50(3)
1.11 Summary
53(1)
Important Equations Used in this Chapter
54(1)
1.12 References
54(1)
1.13 Bibliography
55(1)
1.14 Problems
56(1)
CHAPTER 2 MATERIALS AND PROCESSES
57(44)
2.0 Introduction
57(1)
2.1 Material Property Definitions
57(12)
The Tensile Test
59(3)
Ductility and Brittleness
62(1)
The Compression Test
63(1)
The Bending Test
64(1)
The Torsion Test
64(2)
Fatigue Strength and Endurance Limit
66(1)
Impact Resistance
67(2)
Fracture Toughness
69(1)
Creep and Temperature Effects
69(1)
2.2 The Statistical Nature of Material Properties
69(2)
2.3 Homogeneity and Isotropy
71(1)
2.4 Hardness
72(6)
Heat Treatment
73(1)
Surface (Case) Hardening
74(1)
Heat Treating Non-Ferrous Materials
75(1)
Mechanical Forming and Hardening
76(2)
2.5 Coatings and Surface Treatments
78(4)
Galvanic Action
78(1)
Electroplating
79(1)
Electroless Plating
80(1)
Anodizing
81(1)
Plasma-Sprayed Coatings
81(1)
Chemical Coatings
81(1)
2.6 General Properties of Metals
82(9)
Cast Iron
82(1)
Cast Steels
83(1)
Wrought Steels
83(1)
Steel Numbering Systems
84(3)
Aluminum
87(2)
Titanium
89(1)
Magnesium
90(1)
Copper Alloys
90(1)
2.7 General Properties of Nonmetals
91(3)
Polymers
92(1)
Ceramics
93(1)
Composites
93(1)
2.8 Summary
94(3)
Important Equations Used in this Chapter
95(2)
2.9 References
97(1)
2.10 Bibliography
97(1)
2.11 Problems
98(3)
CHAPTER 3 LOAD DETERMINATION
101(74)
3.0 Introduction
101(1)
3.1 Loading Classes
101(3)
3.2 Free-body Diagrams
104(1)
3.3 Load Analysis
104(3)
Three-Dimensional Analysis
105(1)
Two-Dimensional Analysis
106(1)
Static Load Analysis
107(1)
3.4 Two-Dimensional, Static-Loading Case Studies
107(19)
Case Study 1A - Bicycle Brake Lever Loading Analysis
107(7)
Case Study 2A - Hand-Operated Crimping-Tool Loading Analysis
114(5)
Case Study 3A - Automobile Scissors-Jack Loading Analysis
119(7)
3.5 Three-Dimensional, Static-Loading Case Study
126(6)
Case Study 4A - Bicycle Brake Arm Loading Analysis
127(5)
3.6 Dynamic Loading Case Study
132(5)
Case Study 5A - Fourbar Linkage Loading Analysis
132(5)
3.7 Vibration Loading
137(6)
Natural Frequency
139(2)
Dynamic Forces
141(1)
Case Study 5B - Fourbar Linkage Dynamic Loading Measurement
141(2)
3.8 Impact Loading
143(6)
Energy Method
144(5)
Example 3-1
147(2)
3.9 Beam Loading
149(16)
Shear and Moment
150(1)
Singularity Functions
151(12)
Example 3-2A
153(2)
Example 3-2B
155(3)
Example 3-3A
158(1)
Example 3-3B
159(2)
Example 3-4
161(3)
Superposition
163(2)
3.10 Summary
165(2)
Equations Used in this Chapter
166(1)
3.11 References
167(1)
3.12 Bibliography
168(1)
3.13 Problems
168(7)
CHAPTER 4 STRESS, STRAIN, AND DEFLECTION
175(112)
4.0 Introduction
175(1)
4.1 Stress
175(4)
4.2 Strain
179(1)
4.3 Principal Stresses
179(3)
4.4 Plane Stress and Plane Strain
182(1)
Plane Stress
182(1)
Plane Strain
183(1)
4.5 Mohr's Circles
183(5)
Example 4-1
184(2)
Example 4-2
186(1)
Example 4-3
187(1)
4.6 Applied Versus Principal Stresses
188(1)
4.7 Axial Tension
189(1)
4.8 Direct Shear Stress, Bearing Stress, and Tearout
190(2)
Direct Shear
190(1)
Direct Bearing
191(1)
Tearout Failure
191(1)
4.9 Beams and Bending Stresses
192(8)
Beams in Pure Bending
193(3)
Shear Due to Transverse Loading
196(4)
4.10 Deflection in Beams
200(17)
Deflection by Singularity Functions
202(10)
Example 4-4
202(5)
Example 4-5
207(3)
Example 4-6
210(2)
Statically Indeterminate Beams
212(2)
Example 4-7
214(3)
4.11 Castigliano's Method
217(2)
Deflection by Castigliano's Method
219(1)
Finding Redundant Reactions with Castigliano's Method
219(1)
4.12 Torsion
219(7)
Example 4-8
223(3)
4.13 Combined Stresses
226(3)
Example 4-9
226(3)
4.14 Spring Rates
229(1)
4.15 Stress Concentration
230(7)
Stress Concentration Under Static Loading
231(1)
Stress Concentration Under Dynamic Loading
232(1)
Determining Geometric Stress-Concentration Factors
233(2)
Designing to Avoid Stress Concentrations
235(2)
4.16 Axial Compression - Columns
237(12)
Slenderness Ratio
237(1)
Short Columns
237(1)
Long Columns
238(1)
End Conditions
239(2)
Intermediate Columns
241(2)
Example 4-10
243(4)
Eccentric Columns
247(2)
4.17 Stresses in Cylinders
249(2)
Thick-Walled Cylinders
249(2)
Thin-Walled Cylinders
251(1)
4.18 Case Studies in Static Stress and Deflection Analysis
251(18)
Case Study 1B - Bicycle Brake Lever Stress and Deflection Analysis
252(3)
Case Study 2B - Crimping-Tool Stress and Deflection Analysis
255(6)
Case Study 3B - Automobile Scissors-Jack Stress and Deflection Analysis
261(4)
Case Study 4B - Bicycle Brake-Arm Stress Analysis
265(4)
4.19 Summary
269(6)
Important Equations Used in this Chapter
272(3)
4.20 References
275(1)
4.21 Bibliography
275(1)
4.22 Problems
276(11)
CHAPTER 5 STATIC FAILURE THEORIES
287(58)
5.0 Introduction
287(3)
5.1 Failure of Ductile Materials Under Static Loading
290(11)
The von Mises-Hencky or Distortion-Energy Theory
290(5)
The Maximum Shear Stress Theory
295(2)
Maximum Normal Stress Theory
297(1)
Comparison of Experimental Data with Failure Theories
298(3)
Example 5-1
299(2)
5.2 Failure of Brittle Materials Under Static Loading
301(8)
Even and Uneven Materials
301(2)
The Coulomb-Mohr Theory
303(1)
The Modified-Mohr Theory
304(2)
Example 5-2
306(3)
5.3 Fracture Mechanics
309(8)
Fracture-Mechanics Theory
310(4)
Fracture Toughness Kc
314(1)
Example 5-3
315(2)
5.4 Using The Static-Loading Failure Theories
317(1)
5.5 Case Studies in Static Failure Analysis
318(12)
Case Study 1C - Bicycle Brake Lever Failure Analysis
318(4)
Case Study 2C - Crimping-Tool Failure Analysis
322(3)
Case Study 3C - Automobile Scissors-Jack Failure Analysis
325(2)
Case Study 4C - Bicycle Brake-Arm Factors of Safety
327(3)
5.6 Summary
330(3)
Important Equations Used in this Chapter
331(2)
5.7 References
333(1)
5.8 Bibliography
334(1)
5.9 Problems
335(10)
CHAPTER 6 FATIGUE- FAILURE THEORIES
345(126)
6.0 Introduction
345(2)
History of Fatigue Failure
345(2)
6.1 Mechanism of Fatigue Failure
347(5)
Crack-Initiation Stage
349(1)
Crack-Propagation Stage
349(2)
Fracture
351(1)
6.2 Fatigue-Failure Models
352(2)
Fatigue Regimes
352(1)
The Stress-Life Approach
352(2)
The Strain-Life Approach
354(1)
The LEFM Approach
354(1)
6.3 Machine Design Considerations
354(2)
6.4 Fatigue Loads
356(3)
Rotating Machinery Loading
356(1)
Service Equipment Loading
357(2)
6.5 Measuring Fatigue-Failure Criteria
359(14)
Fully Reversed Stresses
359(7)
Combined Mean and Alternating Stress
366(2)
Fracture-Mechanics Criteria
368(4)
Testing Actual Assemblies
372(1)
6.6 Estimating Fatigue-Failure Criteria
373(16)
Estimating Theoretical Fatigue Strength or Endurance Limit
373(1)
Correction Factors to the Theoretical Fatigue Strength
374(9)
Calculating the Corrected Fatigue Strength Endurance Limit
383(1)
Creating Estimated S-N Diagrams
383(2)
Example 6-1
385(2)
Example 6-2
387(2)
6.7 Notches and Stress Concentrations
389(5)
Notch Sensitivity
389(2)
Example 6-3
391(3)
6.8 Residual Stresses
394(5)
6.9 Designing for High-Cycle Fatigue
399(1)
6.10 Designing for Fully Reversed Uniaxial Stresses
400(9)
Design Steps for Fully Reversed Stresses with Uniaxial Loading
400(2)
Example 6-4
402(7)
6.11 Designing for Fluctuating Uniaxial Stresses
409(18)
Creating the Modified-Goodman Diagram
410(3)
Applying Stress-Concentration Effects with Fluctuating Stresses
413(2)
Determining the Safety Factory with Fluctuating Stresses
415(3)
Design Steps for Fluctuating Stresses
418(9)
Example 6-5
420(7)
6.12 Designing for Multiaxial Stresses in Fatigue
427(5)
Frequency and Phase Relationships
427(1)
Fully Reversed Simple Multiaxial Stresses
428(1)
Fluctuating Simple Multiaxial Stresses
429(1)
Complex Multiaxial Stresses
430(2)
6.13 A General Approach to High-Cycle Fatigue Design
432(5)
Example 6-6
434(4)
6.14 A Case Study in Fatigue Design
438(13)
Case Study 6 - Redesign of a Failed Laybar for a Water-Jet Power Loom
438(13)
6.15 Summary
451(1)
Important Equations Used in this Chapter
452(4)
6.16 References
456(3)
6.17 Bibliography
459(1)
6.18 Problems
460(1)
CHAPTER 7 SURFACE FAILURE
471(64)
7.0 Introduction
471(2)
7.1 Surface Geometry
473(1)
7.2 Mating Surfaces
474(2)
7.3 Friction
476(3)
Effect of Roughness on Friction
478(1)
Effect of Velocity on Friction
478(1)
Rolling Friction
478(1)
Effect of Lubricant on Friction
478(1)
7.4 Adhesive Wear
479(4)
The Adhesive Wear Coefficient
482(1)
7.5 Abrasive Wear
483(4)
Abrasive Materials
486(1)
Abrasion-Resistant Materials
487(1)
7.6 Corrosion Wear
487(3)
Corrosion Fatigue
489(1)
Fretting Corrosion
489(1)
7.7 Surface Fatigue
490(3)
7.8 Spherical Contact
493(6)
Contact Pressure and Contact Patch in Spherical Contact
493(2)
Static Stress Distributions in Spherical Contact
495(4)
Example 7-1
497(2)
7.9 Cylindrical Contact
499(4)
Contact Pressure and Contact Patch in Parallel Cylindrical Contact
499(1)
Static Stress Distributions in Parallel Cylindrical Contact
500(3)
Example 7-2
502(1)
7.10 General Contact
503(5)
Contact Pressure and Contact Patch in General Contact
503(1)
Stress Distributions in General Contact
504(1)
Example 7-3
505(3)
7.11 Dynamic Contact Stresses
508(8)
Effect of a Sliding Component on Contact Stresses
508(6)
Example 7-4
514(2)
7.12 Surface Fatigue-Failure Models Dynamic Contact
516(3)
7.13 Surface Fatigue Strength
519(7)
Example 7-5
525(1)
7.14 Summary
526(4)
Designing to Avoid Surface Failure
526(1)
Important Equations Used in this Chapter
527(3)
7.15 References
530(2)
7.16 Problems
532(3)
PART II MACHINE DESIGN 535(454)
CHAPTER 8 DESIGN CASE STUDIES
537(26)
8.0 Introduction
537(1)
8.1 A Portable Air Compressor
538(4)
Case Study 7A - Preliminary Design of a Compressor Drive Train
540(2)
8.2 A Hay-Bale Lifter
542(4)
Case Study 8A - Preliminary Design of a Winch Lift
542(4)
8.3 A Cam-Testing Machine
546(6)
Case Study 9A - Preliminary Design of a Cam Dynamic Test Fixture
547(5)
8.4 Summary
552(1)
8.5 References
553(1)
8.6 Design Projects
553(10)
CHAPTER 9 SHAFTS, KEYS, AND COUPLINGS
563(78)
9.0 Introduction
563(1)
9.1 Shaft Loads
563(2)
9.2 Attachments and Stress Concentrations
565(2)
9.3 Shaft Materials
567(1)
9.4 Shaft Power
568(1)
9.5 Shaft Loads
568(1)
9.6 Shaft Stresses
569(1)
9.7 Shaft Failure in Combined Loading
570(1)
9.8 Shaft Design
570(12)
General Considerations
571(1)
Design for Fully Reversed Bending and Steady Torsion
572(2)
Design for Fluctuating Bending and Fluctuating Torsion
574(1)
Example 9-1
575(5)
Example 9-2
580(2)
9.9 Shaft Deflection
582(4)
Shafts as Beams
582(1)
Shafts as Torsion Bars
583(1)
Example 9-3
584(2)
9.10 Keys and Keyways
586(9)
Parallel Keys
586(2)
Tapered Keys
588(1)
Woodruff Keys
588(1)
Stresses in Keys
588(1)
Key Materials
589(1)
Key Design
590(1)
Stress Concentration in Keyways
590(1)
Example 9-4
591(4)
9.11 Splines
595(2)
9.12 Interference Fits
597(6)
Stresses in Interference Fits
597(1)
Stress Concentration in Interference Fits
598(1)
Fretting Corrosion
599(1)
Example 9-5
600(3)
9.13 Flywheel Design
603(9)
Energy Variation in a Rotating System
604(1)
Example 9-6
605(5)
Determining the Flywheel Inertia
607(2)
Stresses in Flywheels
609(1)
Failure Criteria
610(1)
Example 9-7
610(2)
9.14 Critical Speeds of Shafts
612(12)
Lateral Vibration of Shafts and Beams Rayleigh's Method
615(2)
Shaft Whirl
617(2)
Torsional Vibration
619(1)
Two Disks on a Common Shaft
620(1)
Multiple Disks on a Common Shaft
621(1)
Controlling Torsional Vibrations
622(1)
Example 9-8
622(2)
9.15 Couplings
624(4)
Rigid Couplings
625(1)
Compliant Couplings
626(2)
9.16 Case Study
628(5)
Designing Driveshafts for a Portable Air Compressor
628(1)
Case Study 7B - Preliminary Design of Shafts for a Compressor Drive Train
629(4)
9.17 Summary
633(2)
Important Equations Used in this Chapter
634(1)
9.18 References
635(1)
9.19 Problems
636(5)
CHAPTER 10 BEARINGS AND LUBRICATION
641(34)
10.0 Introduction
641(3)
A Caveat
643(1)
10.1 Lubricants
644(2)
10.2 Viscosity
646(1)
10.3 Types of Lubrication
646(5)
Full-Film Lubrication
648(3)
Boundary Lubrication
651(1)
10.4 Material Combinations in Sliding Bearings
651(2)
10.5 Hydrodynamic Lubrication Theory
653(8)
Petroff's Equation for No-Load Torque
653(1)
Reynolds' Equation for Ecentric Journal Bearings
654(6)
Torque and Power Losses in Journal Bearings
660(1)
10.6 Design of Hydrodynamic Bearings
661(7)
Design Load Factor The Ocvirk Number
662(1)
Design Procedures
662(3)
Example 10-1
665(3)
10.7 Nonconforming Contacts
668(7)
Example 10-2
673(2)
10.8 Rolling-Element Bearings
675(6)
Comparison of Rolling and Sliding Bearings
676(1)
Types of Rolling-Element Bearings
677(3)
10.9 Failure of Rolling-Element Bearings
681(1)
10.10 Selection of Rolling-Element Bearings
681(7)
Basic Dynamic Load Rating C
681(1)
Basic Static Load Rating C(o)
682(1)
Combined Radial and Thrust Loads
683(1)
Calculation Procedures
683(5)
Example 10-3
686(1)
Example 10-4
687(1)
10.11 Bearing Mounting Details
688(1)
10.12 Special Bearings
689(1)
10.13 Case Study
690(4)
Case Study 9B - Design of Hydrodynamic Bearings for a Cam Test Fixture
691(3)
10.14 Summary
694(4)
Important Equations Used in this Chapter
695(3)
10.15 References
698(1)
10.16 Problems
699(4)
CHAPTER 11 SPUR GEARS
703(70)
11.0 Introduction
703(2)
11.1 Gear Tooth Theory
705(7)
The Fundamental Law of Gearing
705(2)
The Involute Tooth Form
707(1)
Pressure Angle
708(1)
Mesh Geometry
708(1)
Rack and Pinion
709(1)
Changing Center Distance
710(1)
Backlash
711(1)
Relative Tooth Motion
712(1)
11.2 Gear Tooth Nomenclature
712(2)
11.3 Interference and Undercutting
714(3)
Unequal-Addendum Tooth Forms
716(1)
11.4 Contact Ratio
717(3)
Example 11-1
718(2)
11.5 Gear Trains
720(6)
Simple Gear Trains
720(1)
Compound Gear Trains
720(1)
Reverted Compound Trains
721(2)
Example 11-2
722(1)
Epicyclic or Planetary Gear Trains
723(2)
Example 11-3
725(1)
11.6 Gear Manufacturing
726(4)
Forming Gear Teeth
726(1)
Machining
727(1)
Roughing Processes
727(2)
Finishing Processes
729(1)
Gear Quality
729(1)
11.7 Loading on Spur Gears
730(3)
Example 11-4
732(1)
11.8 Stresses in Spur Gears
733(15)
Bending Stresses
733(10)
Example 11-5
742(1)
Surface Stresses
743(5)
Example 11-6
746(2)
11.9 Gear Materials
748(11)
Material Strengths
749(1)
AGMA Bending Fatigue Strengths for Gear Materials
750(3)
AGMA Surface Fatigue Strengths for Gear Materials
753(6)
Example 11-7
755(4)
11.10 Lubrication of Gearing
759(1)
11.11 Design of Spur Gears
759(8)
11.12 Case Study
761(6)
Case Study 7C - Design of Spur Gears for a Compressor Drive-Train
761(6)
11.13 Summary
767(2)
Important Equations Used in this Chapter
768(2)
11.14 References
769(1)
11.15 Problems
770(3)
CHAPTER 12 HELICAL, BEVEL, AND WORM GEARS
773(38)
12.0 Introduction
773(1)
12.1 Helical Gears
773(12)
Helical Gear Geometry
776(1)
Helical Gear Forces
777(1)
Virtual Number of Teeth
777(1)
Contact Ratios
778(1)
Stresses in Helical Gears
779(3)
Example 12-1
782(3)
12.2 Bevel Gears
785(9)
Bevel Gear Geometry and Nomenclature
786(1)
Bevel Gear Mounting
787(1)
Forces on Bevel Gears
787(1)
Stresses in Bevel Gears
788(1)
Example 12-2
789(5)
12.3 Wormsets
794(9)
Materials for Wormsets
795(1)
Lubrication in Wormsets
796(1)
Forces in Wormsets
796(1)
Wormset Geometry
796(1)
Rating Methods
797(2)
A Design Procedure for Wormsets
799(1)
12.4 Case Study
800(3)
Case Study 8B - Design of a Wormset Speed Reducer for a Winch Lift
800(3)
12.5 Summary
803(5)
Important Equations Used in this Chapter
805(3)
12.6 References
808(1)
12.7 Problems
809(2)
CHAPTER 13 SPRING DESIGN
811(78)
13.0 Introduction
811(1)
13.1 Spring Rate
811(3)
13.2 Spring Configurations
814(2)
13.3 Spring Materials
816(6)
Spring Wire
817(2)
Flat Spring Stock
819(3)
13.4 Helical Compression Springs
822(13)
Spring Lengths
822(1)
End Details
823(1)
Active Coils
823(1)
Spring Index
824(1)
Spring Deflection
824(1)
Spring Rate
824(1)
Stresses in Helical Compression Spring Coils
825(1)
Residual Stresses
826(1)
Buckling of Compression Springs
827(1)
Compression-Spring Surge
828(1)
Allowable Strengths for Compression Springs
829(2)
The Torsional-Shear S-N Diagram for Spring Wire
831(1)
Example 13-1
831(1)
The Modified-Goodman Diagram for Spring Wire
832(3)
Example 13-2
833(2)
13.5 Designing Helical Compression Springs for Static Loading
835(6)
Example 13-3
836(5)
13.6 Designing Helical Compression Springs for Fatigue Loading
841(9)
Example 13-4
844(6)
13.7 Helical Extension Springs
850(11)
Active Coils in Extension Springs
850(1)
Spring Rate of Extension Springs
850(1)
Spring Index of Extension Springs
850(1)
Coil Preload in Extension Springs
851(1)
Deflection of Extension Springs
851(1)
Coil Stresses in Extension Springs
852(1)
End Stresses in Extension Springs
852(1)
Surging in Extension Springs
852(1)
Material Strengths for Extension Springs
853(1)
Design of Helical Extension Springs
853(1)
Example 13-5
854(7)
13.8 Helical Torsion Springs
861(8)
Terminology for Torsion Springs
862(1)
Number of Coils in Torsion Springs
862(1)
Deflection of Torsion Springs
863(1)
Spring Rate of Torsion Springs
863(1)
Coil Closure
863(1)
Coil Stresses in Torsion Springs
864(1)
Material Parameters for Torsion Springs
865(1)
Safety Factors for Torsion Springs
866(1)
Designing Helical Torsion Springs
866(1)
Example 13-6
866(3)
13.9 Belleville Spring Washers
869(8)
Load-Deflection Function for Belleville Washers
872(1)
Stresses in Belleville Washers
872(1)
Static Loading of Belleville Washers
873(1)
Dynamic Loading
874(1)
Stacking Springs
874(1)
Designing Belleville Springs
874(1)
Example 13-7
875(2)
13.10 Case Study
877(5)
Case Study 9C - Design of a Return Spring for a Cam-Follower Arm
877(5)
13.11 Summary
882(3)
Important Equations Used in this Chapter
882(3)
13.12 References
885(1)
13.13 Problems
886(3)
CHAPTER 14 SCREWS AND FASTENERS
889(70)
14.0 Introduction
889(2)
14.1 Standard Thread Forms
891(3)
Tensile Stress Area
893(1)
Standard Thread Dimensions
894(1)
14.2 Power Screws
894(12)
Square, Acme, and Buttress Threads
894(2)
Power Screw Application
896(1)
Power Screw Force and Torque Analysis
897(4)
Friction Coefficients
901(1)
Self-Locking and Back-Driving of Power Screws
901(1)
Screw Efficiency
902(1)
Ball Screws
903(1)
Example 14-1
904(2)
14.3 Stresses in Threads
906(2)
Axial Stress
906(1)
Shear Stress
907(1)
Torsional Stress
908(1)
14.4 Types of Screw Fasteners
908(4)
Classification by Intended Use
908(1)
Classification by Thread Type
909(1)
Classification by Head Style
909(2)
Nuts and Washers
911(1)
14.5 Manufacturing Fasteners
912(2)
14.6 Strengths of Standard Bolts and Machine Screws
914(1)
14.7 Preloaded Fasteners in Tension
914(14)
Preloaded Bolts Under Static Loading
917(6)
Example 14-2
920(3)
Preloaded Bolts Under Dynamic Loading
923(1)
Example 14-3
924(4)
14.8 Determining the Joint Stiffness Factor
928(7)
Gasketed Joints
930(5)
Example 14-4
931(4)
14.9 Controlling Preload
935(4)
The Turn-of-the-Nut Method
937(1)
Torque-Limited Fasteners
937(1)
Load-Indicating Washers
937(1)
Torsional Stress Due to Torquing of Bolts
938(1)
Example 14-5
939(1)
14.10 Fasteners in Shear
939(6)
Dowel Pins
941(1)
Centroids of Fastener Groups
942(1)
Determining Shear Loads on Fasteners
943(1)
Example 14-6
944(1)
14.11 Case Study
945(6)
Case Study 7D - Design of the Headbolts for an Air Compressor
945(6)
14.12 Summary
951(2)
Important Equations Used in this Chapter
951(2)
14.13 References
953(1)
14.14 Bibliography
954(1)
14.15 Problems
955(4)
CHAPTER 15 CLUTCHES AND BRAKES
959(30)
15.0 Introduction
959(2)
15.1 Types of Brakes and Clutches
961(6)
15.2 Clutch/Brake Selection and Specification
967(1)
15.3 Clutch and Brake Materials
968(1)
15.4 Disk Clutches
968(4)
Uniform Pressure
969(1)
Uniform Wear
970(2)
Example 15-1
971(1)
15.5 Disk Brakes
972(1)
15.6 Drum Brakes
973(9)
Short Shoe External Drum Brakes
974(2)
Example 15-2
975(1)
Long Shoe External Drum Brakes
976(5)
Example 15-3
979(2)
Long Shoe Internal Drum Brakes
981(1)
15.7 Summary
982(2)
Important Equations Used in this Chapter
983(1)
15.8 References
984(1)
15.9 Bibliography
985(1)
15.10 Problems
985(4)
APPENDIX A CROSS-SECTIONAL PROPERTIES 989(2)
APPENDIX B MASS PROPERTIES 991(2)
APPENDIX C MATERIAL PROPERTIES 993(8)
APPENDIX D BEAM TABLES 1001(4)
APPENDIX E STRESS-CONCENTRATION FACTORS 1005(8)
APPENDIX F CONVERSION FACTORS 1013(2)
APPENDIX G ANSWERS TO SELECTED PROBLEMS 1015(10)
APPENDIX H LIST OF SOFTWARE INCLUDED ON CD-ROM 1025(12)
INDEX 1037
CD-ROM BACK COVER

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program