rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780471682387

Macromolecules Containing Metal and Metal-Like Elements, Group IVA Polymers

by ; ; ;
  • ISBN13:

    9780471682387

  • ISBN10:

    0471682381

  • Format: Hardcover
  • Copyright: 2005-03-17
  • Publisher: Wiley-Interscience

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $220.00 Save up to $71.50
  • Rent Book $148.50
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Macromolecules Containing Metal and Metal-Like Elements, Group IVA Polymers [ISBN: 9780471682387] for the semester, quarter, and short term or search our site for other textbooks by Abd-El-Aziz, Alaa S.; Carraher, Charles E.; Pittman, Charles U.; Zeldin, Martel. Renting a textbook can save you up to 90% from the cost of buying.

Summary

This series provides a useful, applications-oriented forum for the next generation of macromolecules and materials. Volume 4 provides useful descriptions of Group IV metals and their applications, including silicon-, organogermanium-, organotin-, and organolead-containing polymers. A high-quality team of macromolecular experts from around the world have put together these leading macromolecule titles.

Table of Contents

Preface xv
Series Preface xvii
1. Overview-Group IVA Polymers
1(6)
Charles E. Carraher, Jr., Charles U. Pittman, Jr., Martel Zeldin, and Alaa S. Abd-El-Aziz
I. Introduction
2(2)
II. Group IV Polymers
4(1)
III. References
5(2)
2. Hyperbranched Poly(silylenearylene)s
7(30)
Ronghua Zheng, Hongchen Dong, and Ben Zhong Tang
I. Introduction
8(2)
II. Results and Discussion
10(17)
A. Monomer Synthesis
10(1)
B. Polymerization Behaviors
11(2)
C. Structural Characterizations
13(11)
D. Polymer Properties
24(3)
III. Conclusions
27(1)
IV. Experimental Section
27(8)
A. Materials and Instruments
27(1)
B. Synthesis of (4-Bromophenylethynyl)- trimethylsilane
27(1)
C. Synthesis of (4-Bromo-3-methylphenylethynyl)- trimethylsilane
28(1)
D. Synthesis of (4-Bromo-2, 5-dimethylphenylethynyl)- trimethylsilane
28(1)
E. Synthesis of Bis[4-(2-trimethylsilyethynyl)phenyl]- dimethylsilane
29(1)
F. Synthesis of Bis[4-(2-trimethylsilyethynyl)phenyl]- methylphenylsilane
29(1)
G. Synthesis of Bis[4-(2-trimethylsilyethynyl)phenyl]- diphenylsilane
30(1)
H. Synthesis of Bis[2-methyl-4-(2-trimethylsilylethynyl)-phenyl]dimethylsilane
30(1)
L Synthesis of Bis[2,5-dimethyl-4-(2-trimethylsilylethynyl)- phenyl]dimethylsilane
30(1)
J. Synthesis of Bis(4-ethynylphenyl)dimethylsilane
31(1)
K. Synthesis of Bis(4-ethynylphenyl)methylphenylsilane
31(1)
L. Synthesis of Bis(4-ethynylphenyl)diphenylsilane
31(1)
M. Synthesis of Bis(4-ethynyl-2-methylphenyl)- dimethylsilane
32(1)
N. Synthesis of Bis(2,5-dimethyl-4-ethynylphenyl)- dimethylsilane
32(1)
O. Diyne Polycyclotrimerization
32(1)
P. Polymer Characterization
33(1)
Q. Synthesis of Model Compounds 1,3,5- and 1,2,4- Triphenylbenzenes
34(1)
R. Decomposition of Hyperbranched Polymers
35(1)
S. Structural Simulation
35(1)
V. Acknowledgments
35(1)
VI. References
36(1)
3. Silole-Containing Conjugated Polymers
37(14)
Jacky W.Y. Lam, Junwu Chen, Hongchen Dong, and Ben Zhong Tang
I. Introduction
38(1)
II. Polymer Syntheses
38(3)
III. Thermal Stability
41(1)
IV. Photoluminescence
42(2)
V. Electroluminescence
44(3)
VI. Optical Limiting
47(1)
VII. Conclusions
48(1)
VIII. Acknowledgments
48(1)
IX. References
48(3)
4. Silica Polyamine Composites: Advanced Materials for Metal Ion Recovery and Remediation
51(28)
Edward Rosenberg
I. Introduction
52(3)
II. Relationships between Composite Characteristics and the Starting Materials Used
55(3)
A. Wide-Pore Amorphous Silica
55(1)
B. Particle Size and Back Pressure
56(1)
C. Capacity, Longevity, and Polymer Molecular Weight
57(1)
III. Comparison with Other Resin Technologies
58(3)
IV. Structural Considerations
61(5)
A. The Nature of the Polymer Graft to the Silica Surface
61(1)
B. Polymer Structure and Metal Ion Coordination
62(2)
C. Molecular Modeling Studies
64(2)
V. Applications
66(10)
A. Metal Chromatography: Separation and Concentration of Multicomponent Metal Mixture from Acid Mine Drainage
66(2)
B. Selective Recovery of Copper from Solvent Extraction Circuit Waste Streams of Acid Mine Leaches
68(3)
C. Separation of Cobalt and Copper Using Two Different Polyamine Composites in Tandem Columns
71(1)
D. Removal of Mercury from Waste Solutions Using Sulfur-Modified Silica-Polyamine Composites
72(4)
VI. Future Work
76(1)
VII. Acknowledgments
77(1)
VIII. References
77(2)
5. Polyhedral Oligomeric Silsesquioxane (POSS) Polymers, Copolymers, and Resin Nanocomposites
79(54)
Guizhi Li and Charles U. Pittman, Jr
I. Introduction
80(2)
II. Synthesis of Polyhedral Oligomeric Silsesquioxanes
82(4)
A. Monofunctional POSS Synthesis
83(1)
B. Multifunctional POSS Synthesis
84(2)
III. POSS Polymers and Copolymers (Thermoplastics)
86(20)
A. Styryl-POSS Polymers, Copolymers, and Nanocomposites
87(6)
B. Methacrylate-POSS Polymers, Copolymers, and Nanocomposites
93(5)
C. Norbornenyl-POSS Copolymers and Nanocomposites
98(6)
D. POSS-Olefin Copolymers and Nanocomposites
104(1)
E. Siloxane-POSS Copolymers
105(1)
IV. Crosslinked POSS-Containing Resins and Materials
106(17)
A. Vinyl Ester, Epoxy, and Phenolic Resins Containing POSS
108(7)
B. Dicyclopentadiene Resins Containing POSS
115(2)
C. Styrene and Methyl Methacrylates Resins Containing POSS
117(6)
V. Other Applications
123(3)
VI. Summary
126(1)
VII. Acknowledgments
126(1)
VIII. References
127(6)
6. Silica- and Silsesquioxane-Containing Polymer Nanohybrids
133(28)
Mohammad A. Wahab, Il Kim, and Chang-Sik Ha
I. Introduction
134(1)
II. Polymer-Silica or Polymer-Silsesquioxane Nanohybrids
135(8)
A. Key Parameters for Forming Nanohybrids
135(3)
B. The Sol-Gel Method and Its Related Parameters
138(2)
C. Polymer-Silica Nanohybrids
140(1)
D. Polymer-Silsesquioxane (SSQ) Nanohybrids
140(2)
E. Other Metal Oxide or Metal-Like Materials Containing Polymer Nanohybrids
142(1)
III. Polyimide-Silica or Polyimide-Silsesquioxane Nanohybrids
143(13)
A. Polyimide
143(1)
B. Polyimide-Silica Nanohybrids Their Characterization and Properties
143(8)
C. Polyimide-Silsesquioxane Nanohybrids-Their Characterization and Properties
151(3)
D. Polyimide-Silica-Titania Nanohybrids
154(2)
IV. Conclusions
156(1)
V. Acknowledgments
157(1)
VI. References
157(4)
7. Siloxane Elastomers and Copolymers
161(42)
Sakuntala Chatterjee Ganguly
Part 1. Siloxane-Divinylbenzene Copolymers as Elastomers
163(12)
I. Introduction
163(1)
A. Silicone Elastomers by Radical Polymerization
163(1)
B. Synthesis of Silicone Elastomers by Combining Radical Polymerization and Hydrosilation
166(1)
C. Synthesis of Silicone Elastomers by Polycondensation Reaction
167(1)
D. Synthesis of Silicone Elastomers by Side-Chain and Main-Chain Hydrosilation Reactions
168(3)
II. Experimental Section
171(1)
A. Materials and Instruments
171(1)
B. Synthesis of Poly(tetramethyldisiloxane-divinylbenzene) (PTMS-DVB)
171(1)
III. Results and Discussions
171(3)
IV. Conclusions
174(1)
Part 2. Polyviologen and Siloxane-Based Polyviologen Copolymers
175(8)
I. Introduction
175(1)
A. Polyviologen Based on 4,4'Bipyridinium Salts
176(1)
B. Miscellaneous Polyviologens
176(1)
C. Modified Route to Pyridino-Terminated Oligo-(dimethylsiloxane)
178(1)
D. Alternate Viologen Polymers from Vinylbenzyl Chloride-Modified Tetramethyldisiloxane and 4,4'-Bipyridine
179(1)
II. Experimental Section
180(1)
A. Materials and Instruments
180(1)
B. Synthesis of Bis(4-Chloromethylphenyl)tetramethyl-disiloxane (BCTD)
181(1)
C. Synthesis of Viologen Polymer from BCTD and 4,4'-Bipyridine
181(1)
III. Results and Discussions
181(1)
IV Conclusions
182(1)
Part 3. Siloxane-Based Polyurethane Copolymers
183(21)
I. Introduction
183(1)
A. Blends of Polysiloxane with Poly(etherurethane) and Blends of Polydimethylsiloxane with Thermoplastic Polyurethane-True and Semi-Interpenetrating Networks of Silicone-Urethanes
184(1)
B. Siloxane Groups and Urethanes Linking Units into PEO
185(1)
C. Side-Chain Polyurethane Based on Polysiloxanes with Pendant Primarily Alcohol and Quaternary Ammonium Groups
185(1)
D. End-Chain Silicone-Modified Segmented Polyurethane Membrane as Blood-Compatible Ion-Selective Electrode
186(1)
E. Polyurethane Containing Side-Chain Polyhedral Oligometric Silsesquioxanes (POSS)
187(1)
F. Diphenylsilanediol-Based Polyurethanes
187(1)
G. Siloxane-Urethane Containing Block Copolymers
188(1)
H. Polyurethane Modified with an Aminoethylaminopropyl-Substituted Polydimethylsiloxane
192(1)
I. Synthesis of Waterborne Polyurethane Modified with an Aminoethylaminopropyl-Substituted Polydimethylsiloxane
193(1)
J. Alternate Siloxane-Urethane Copolymer by Three-Step Reaction
194(2)
II. Experimental Section
196(1)
A. Materials and Instruments
196(1)
B. Synthesis of Bis(3-trimethylsiloxypropyl)tetramethyl Disiloxane (BTTD) from Allyloxytrimethylsilane
197(1)
C. Synthesis of Bis(3-hydroypropyl)tetramethyl Disiloxane (BHTD)
197(1)
D. Synthesis of Siloxane-Urethane Copolymer from BHTD and 2,5-TDI
197(1)
III. Results and Discussions
197(2)
IV Acknowledgments
199(1)
V References
199(4)
8. Bioinspired Silica Synthesis
203(22)
Siddharth V. Patwardhan and Stephen J. Clarson
I. Introduction
204(4)
A. Silica
204(1)
B. Silica: Existence, Solubility, and Synthesis
204(1)
i. Silica Synthesis by Sol-Gel Processing
206(1)
a. Hydrolysis
206(1)
b. Condensation
206(1)
ii. Silica Particle Synthesis
207(1)
C. Biosilica: Existence and Importance
207(1)
II. Biosilicification and Protein Interactions
208(3)
A. Diatoms
208(2)
B. Grasses
210(1)
C. Sponges
211(1)
III. Bioinspired and Biomimetic Synthesis: The Use of Poly(allylamine Hydrochloride)
211(5)
A. Synthesis of Spherical Silica Particles
212(1)
B. Synthesis of Nonspherical Silica Structures
213(1)
C. Synthesis Using a Mixture of Macromolecules
213(1)
D. Electrostatically Self-Assembled Bilayers of PAAcid and PAH
214(1)
E. Role of Polyelectrolytes
214(2)
IV. Use of Other Macromolecular Systems to Synthesize Silica
216(4)
A. Silica Synthesis Using Polyamino Acids
216(1)
B. Silica Synthesis Using Polypeptides
216(3)
C. Silica Synthesis Using Polycations
219(1)
D. Silica Synthesis Using Polyanions and Other Systems
219(1)
V. Summary
220(1)
VI. Future Work
220(1)
VII. Acknowledgments
221(1)
VIII. References
221(4)
9. Organogermanium Polymers
225(38)
Charles E. Carraher Jr., Charles U. Pittman, Jr., Martel Zeldin, and Alaa S. Abd-El-Aziz
I. Introduction
226(1)
II. Polygermanes
227(7)
A. Wurtz Reactions
228(2)
B. Catalytic Routes
230(1)
C. Ligand Substitution
230(1)
D. Electrochemical Synthesis
231(1)
E. Chemical Properties
232(1)
F. Physical Properties
232(1)
G. Miscellaneous
233(1)
III. Organogermanium-Carbon Backbone Polymers
234(10)
A. Organogermanium Polymers Containing σ-π Conjugation
235(8)
B. Simple Ge-C Polymers
243(1)
IV. Polyferroceneylgermanes
244(1)
V. Polymers Containing Oxygen, Nitrogen, Silicon, and Sulfur in the Backbone
245(8)
A. Ge-O Polymers
245(3)
B. Ge-N Polymers
248(2)
C. Ge-S Polymers
250(1)
D. Ge-Si Polymers
250(1)
E. Other Mixed-Bonded Polymers
251(2)
VI. Anchored Organogermanium Products
253(2)
VII. Stacked Phthalocyanine Polymers
255(1)
VIII. Hyperbranched Materials
256(2)
IX. Summary
258(1)
X. References
258(5)
10. Organotin Polymers 263(48)
Charles E. Carraher, Jr
I. Introduction
264(1)
II. Mechanisms
265(1)
III. Structures
266(2)
IV. Organotin Polymers
268(1)
V. Organotin Appendages
268(14)
A. Vinyl Introduction
268(1)
i. Organoesters and Ethers
268(1)
ii. Organotin Carbon
273(2)
B. Performed Polymer
275(4)
C. Crosslinked Mixtures
279(3)
VI. Organotin-Containing Backbones
282(6)
A. Noncarbon-Linked Organotin Polymers
282(4)
B. Organotin Polyolefins
286(2)
VII. Polystannanes
288(1)
VIII. Organotin Aluminoxanes and Titanoxanes
288(1)
IX. Group VA-Containing Organotin Polymers
289(1)
X. Stannoxy Titanoxane Polymers
290(1)
XI. Stannoxane Polymers
290(1)
XII. Bioactivity
291(2)
XIII. General Physical Properties
293(6)
A. Solubility
293(1)
B. Stability
294(1)
C. Physical Nature
294(1)
D. Molecular Weight
294(1)
E. Thermal Properties
294(1)
F Electrical Properties
295(1)
G. Mass Spectral Behavior
295(4)
H. Miscellaneous
299(1)
XIV. Interfacial Polymerization
299(4)
XV. Summary
303(1)
XVI. References
303(8)
11. Organolead-Containing Polymers 311(22)
Charles E. Carraher, Jr
I. Introduction
312(1)
II. Polymerization and Copolymerization of Vinyl Lead Compounds
313(2)
III. Chelation Polymers and Copolymers Derived from Poly(Acrylic Acid)
315(1)
IV. Arylene-Bridged Products
316(1)
V. Solid-State Products
316(8)
A. Nitrogen-Coordinated Products
317(2)
B. Sulfur-Coordinated Products
319(2)
C. Halide-Coordinated Products
321(1)
D. Oxygen Coordinated Products
322(2)
VI. Condensation Products
324(2)
VII. Miscellaneous
326(2)
VIII. Summary
328(1)
IX. References
328(5)
Index 333

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program