did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9789810233730

Massive Neutrinos in Physics and Astrophysics

by ;
  • ISBN13:

    9789810233730

  • ISBN10:

    9810233736

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 1998-03-01
  • Publisher: World Scientific Pub Co Inc
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $70.00
We're Sorry.
No Options Available at This Time.

Summary

This book provides a complete and up-to-date discussion on the theory, phenomenology, cosmology and astrophysics of massive neutrinos. Starting with a chapter on mathematical preliminaries that lead to the derivation of the standard model and its properties, it gives a discussion on the nature of Dirac and Majorana masses for neutrinos and the various extensions of the standard model (left-right, supersymmetric, etc.) that explain the small neutrino mass. Various phenomena related to neutrino mass such as rare decays of muons and kaons, double beta decay, and neutrinos in a medium, are discussed. The final chapters include discussions on solar and supernova neutrinos and neutrino cosmology. Extensive references to the existing literature are included.

Table of Contents

Preface to the second edition vii(2)
From the preface to the first edition ix(2)
Notations xi
I Preliminaries 1(72)
1 Introduction
3(17)
1.1 History
3(2)
1.2 Four-Fermi interaction
5(6)
1.2.1 Modern form of four-Fermi interaction
5(2)
1.2.2 Fierz-Michel transformation
7(3)
1.2.3 Problems with the four-Fermi interaction
10(1)
1.3 Symmetries and forces
11(7)
1.3.1 Global symmetries
11(1)
1.3.2 Local symmetries
12(2)
1.3.3 Spontaneous breaking of symmetries
14(4)
1.4 Renormalizability and anomalies
18(2)
2 The Standard model and the neutrion
20(20)
2.1 Gauge interactions in the standard model
21(4)
2.2 Neutral current interactions of neutrinos
25(3)
2.3 Neutrino-electron scattering in the standard model
28(6)
2.3.1 V(e)e and V(e)e scattering
28(4)
2.3.2 V(Mu)e and V(Mu)e scattering
32(1)
2.3.3 Neutrino pair production
33(1)
2.4 Neutrino-nucleon scattering in the standard model
34(4)
2.4.1 Quasi-elastic V(e)N and V(e)N scattering
34(2)
2.4.2 Deep inelastic scattering of neutrinos off nucleons
36(2)
2.5 Neutrino mass in the standard model
38(2)
3 Massive neutrions
40(9)
3.1 Motivations for neutrino mass
40(4)
3.1.1 Theoretical motivations in Particle physics
41(1)
3.1.2 Motivations from Astrophysics and Cosmology
42(2)
3.2 Questions related to neutrino mass
44(2)
3.3 Tests of neutrino mass
46(3)
3.3.1 Kinematic tests
46(1)
3.3.2 Exclusive tests
47(2)
4 Dirac vs. Majorana masses
49(24)
4.1 Two-component spinor field
49(3)
4.2 Mathematical definition of a Majorana field
52(3)
4.3 Different representations of Dirac matrices
55(4)
4.3.1 Dirac representation
56(1)
4.3.2 Majorana representation
57(1)
4.3.3 Other representations
58(1)
4.4 Majorana neutrinos and discrete symmetries of space-time
59(5)
4.4.1 Properties under C
59(2)
4.4.2 Properties under CP
61(1)
4.4.3 Properties under CPT
62(2)
4.5 The Majorana basis of mass terms
64(3)
4.6 The two-component basis in a different notation
67(4)
4.7 Diagonalization of fermion mass matrices
71(2)
II Models of neutrino mass 73(86)
5 Neutrino mass in SU(2)(L) X u(1) y models
75(25)
5.1 Models with enlarged fermion sector
75(6)
5.1.1 A simple model with Dirac neutrinos
76(1)
5.1.2 Neutrino mixing
77(1)
5.1.3 Shortcomings of the model
77(1)
5.1.4 The complete model with right-handed neutrinos
78(3)
5.2 Models with expanded Higgs sector
81(8)
5.2.1 Adding a triplet delta
82(3)
5.2.2 Model with a singly charged singlet
85(2)
5.2.3 Model with doubly charged singlet
87(2)
5.3 The method of flavor diagrams
89(2)
5.4 Models with spontaneous B-L violation
91(9)
5.4.1 Constraints on Majoron models
92(2)
5.4.2 Majoron in the model with right-handed neutrinos
94(3)
5.4.3 Majorons in models with extended Higgs sector
97(3)
6 Neutrino mass in Left-Right symmetric models
100(24)
6.1 The gauge sector
101(8)
6.1.1 Symmetry breaking
101(5)
6.1.2 Constraints on the masses of the gauge bosons
106(3)
6.2 Majorana neutrinos
109(5)
6.2.1 The see-saw mechanism
109(2)
6.2.2 Constraints on the eV-keV-MeV spectrum
111(3)
6.3 Physics involving right-handed neutrinos
114(4)
6.3.1 Flavor changing neutral currents
114(1)
6.3.2 Decay of the right-handed neutrinos
115(3)
6.4 Naturalness of the see-saw formula
118(3)
6.5 Dirac neutrinos
121(3)
7 Neutrino mass in Grand unified models
124(21)
7.1 SU(5)
124(3)
7.2 Neutrino masses in SU(5) model
127(2)
7.3 SO(10)
129(4)
7.4 Neutrino mass in SO(10) models
133(7)
7.5 Predictive SO(10) scenarios for neutrino masses
140(2)
7.6 Neutrino masses in E6
142(3)
8 Neutrino mass in supersymmetric models
145(14)
8.1 Introduction
145(2)
8.2 The Lagrangian for supersymmetric field theories
147(2)
8.3 Soft breaking of supersymmetry
149(2)
8.4 Supersymmetric standard model
151(2)
8.5 Neutrino mass in MSSM
153(4)
8.6 Supersymmetric Left-Right model
157(2)
III Phenomenology 159(112)
9 Kinematic tests of neutrino mass
161(12)
9.1 Beta decay and the mass of the vEpsilon
161(8)
9.1.1 The electron spectrum
162(3)
9.1.2 Discussion of experimental efforts
165(3)
9.1.3 Effect of neutrino mixing
168(1)
9.2 Pion decay and the mass of the Nu Mu
169(1)
9.3 Tau decay and the mass of the Tan
170(1)
9.4 Other processes
171(2)
9.4.1 Electron capture: mass of the vEpsilon
171(1)
9.4.2 Kaon decay: mass of the Nu Tan
171(2)
10 Neutrino oscillations
173(20)
10.1 Neutrino oscillations in vacuum
173(10)
10.1.1 Theory of neutrino oscillations
174(2)
10.1.2 Experimental searches of neutrino oscillations
176(2)
10.1.3 Understanding the experimental results
178(4)
10.1.4 Wave packet treatment of neutrino oscillations
182(1)
10.2 Atmospheric neutrinos
183(3)
10.2.1 Summary of experimental data
183(2)
10.2.2 Neutrino masses and mixings implied by data
185(1)
10.3 Oscillation with unstable neutrinos
186(2)
10.4 Neutrino oscillations in matter
188(5)
11 Electromagnetic properties of neutrinos
193(23)
11.1 Electromagnetic form factors of a neutrino
194(6)
11.1.1 Form factors of a Dirac neutrino
195(1)
11.1.2 Form factors of a Majorana neutrino
196(3)
11.1.3 Form factors for a Weyl neutrino
199(1)
11.2 Kinematics of radiative decays
200(1)
11.3 Model calculations
201(11)
11.3.1 SU(2)(L) X U(1)(Y) model with Dirac neutrinos
202(4)
11.3.2 SU(2)(L) X U(1)(Y) models with Majorana neutrinos
206(3)
11.3.3 Left-right symmetric model
209(3)
11.4 Large magnetic moment and small neutrino mass
212(4)
12 Double beta decay
216(20)
12.1 Introduction
216(2)
12.2 Kinematical properties
218(4)
12.3 Neutrinoless double beta decay in SU(2)(L) X U(1)(Y) models
222(4)
12.3.1 Light Majorana neutrino exchange
223(2)
12.3.2 Heavy Majorana neutrino exchange
225(1)
12.3.3 Exchange of doubly charged Higgs boson
226(1)
12.4 Neutrinoless double beta decay in Left-Right models
226(5)
12.4.1 Light neutrino exchange
227(1)
12.4.2 Heavy Majorana neutrino exchange
228(1)
12.4.3 Left-right mixing contribution
228(2)
12.4.4 Higgs exchange contribution
230(1)
12.5 Neutrinoless double beta decay in supersymmetric models
231(1)
12.6 Majoron emission in XXXXX decay
232(2)
12.7 Neutrino mass and XXXXX decay
234(2)
13 Related processes
236(16)
13.1 Lepton flavor changing processes
236(10)
13.1.1 Radiative decays of muon and tau
236(3)
13.1.2 Decays of Mu and Tan into charged leptons
239(2)
13.1.3 Muonium-antimuonium transition
241(4)
13.1.4 Semi-leptonic processes
245(1)
13.2 CP-violation in the leptonic sector
246(6)
13.2.1 CP-violating phases in the fermion mass matrix
246(2)
13.2.2 Electric dipole moment of the electron
248(4)
14 Neutrino properties in material media
252(19)
14.1 The dispersion relation of neutrinos in a medium
253(6)
14.1.1 The general structure
253(2)
14.1.2 Propagators in the thermal medium
255(2)
14.1.3 Calculation of the dispersion relation of neutrinos
257(2)
14.2 Electromagnetic properties of neutrinos in a medium
259(9)
14.2.1 General considerations
259(3)
14.2.2 Calculation of the vertex in a background of electrons
262(3)
14.2.3 Induced electric charge of neutrinos
265(1)
14.2.4 Radiative neutrino decay in a medium
266(2)
14.3 Other effects
268(3)
IV Astrophysics and Cosmology 271(80)
15 Solar neutrinos
273(27)
15.1 Production and detection of solar neutrinos
274(8)
15.1.1 Source of neutrinos in the sun
274(3)
15.1.2 Detection of solar neutrinos
277(2)
15.1.3 The solar neutrino puzzle
279(3)
15.2 Solution using neutrino oscillations
282(9)
15.2.1 Vacuum oscillations
282(1)
15.2.2 Resonant oscillations in solar matter
283(8)
15.3 Solution using neutrino decay
291(1)
15.4 Solution using neutrino magnetic moment
291(4)
15.5 Violation of the equivalence principle for neutrinos
295(2)
15.6 Implications and outlook
297(3)
15.6.1 Time variation of the solar neutrino flux
297(1)
15.6.2 Outlook
298(2)
16 Neutrinos from supernovae
300(18)
16.1 Qualitative picture of supernova collapse
300(2)
16.2 Flux of supernova neutrinos
302(3)
16.3 Neutrino properties implied by SN1987A observations
305(13)
16.3.1 Neutrino mass
306(1)
16.3.2 Neutrino lifetime
307(1)
16.3.3 Magnetic moment of the neutrino
307(4)
16.3.4 Electric charge of neutrino
311(1)
16.3.5 Strength of right-handed weak interactions
311(1)
16.3.6 Radiative decay of neutrinos
312(2)
16.3.7 Bounds on majoronic decay modes
314(1)
16.3.8 Bounds on V(Tan) -> Nu(Epsilon)e(+)e(-) decay mode
315(1)
16.3.9 Bound on neutrino mixings
316(1)
16.3.10 Test of weak equivalence principle for neutrinos
317(1)
17 Neutrino cosmology
318(33)
17.1 The Big Bang model
318(4)
17.2 Neutrino decoupling
322(2)
17.3 Nucleosynthesis and the number of neutrino species
324(3)
17.4 Constraints on stable neutrino properties
327(7)
17.4.1 Bound on the degeneracy of massless neutrinos
328(1)
17.4.2 Bound on light neutrino masses
328(2)
17.4.3 Bound on heavy stable neutrino masses
330(4)
17.5 Constraints on heavy unstable neutrinos
334(2)
17.6 Limits for radiative neutrino decays
336(4)
17.7 Limits on neutrino properties from nucleosynthesis
340(3)
17.7.1 Limit on interaction of right-handed neutrinos
340(1)
17.7.2 Neutrino mass
341(1)
17.7.3 Neutrino magnetic moment
342(1)
17.8 Neutrinos and dark matter in the universe
343(8)
17.8.1 Galactic halos and neutrinos
343(4)
17.8.2 Galaxy formation and neutrinos
347(4)
V Epilogue 351(16)
18 Summary and outlook of neutrino physics
353(14)
18.1 Introduction
353(5)
18.1.1 Solar neutrino deficit
354(1)
18.1.2 Atmospheric neutrino deficit
355(1)
18.1.3 Results from the LSND experiment
355(1)
18.1.4 Hot dark matter
356(1)
18.1.5 Other constraints
357(1)
18.2 Neutrino mass textures consistent with data
358(2)
18.2.1 Are neutrinos degenerate?
358(1)
18.2.2 The need for a sterile neutrino
359(1)
18.3 Higher unification: two types of see-saw mechanism
360(3)
18.4 Predictions from minimal SO(10) grand unification models
363(1)
18.5 Beyond grand unification: into the shadow universe
364(1)
18.6 Conclusions
365(2)
References 367(26)
Index 393

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program