rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9781569903483

Materials Science of Polymers for Engineers

by ;
  • ISBN13:

    9781569903483

  • ISBN10:

    1569903484

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2003-06-01
  • Publisher: Hanser Pub Inc

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $99.95 Save up to $42.98
  • Rent Book $56.97
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 24-48 HOURS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Materials Science of Polymers for Engineers [ISBN: 9781569903483] for the semester, quarter, and short term or search our site for other textbooks by Osswald, Tim A.; Menges, Georg. Renting a textbook can save you up to 90% from the cost of buying.

Table of Contents

Part I Basic Principles 1(182)
1 Introduction to Polymers
3(12)
1.1 General Properties
3(7)
1.2 Identification of Polymers
10(3)
Problems
13(1)
References
13(2)
2. Historical Background
15(28)
2.1 From Natural to Synthetic Rubber
15(6)
2.2 Cellulose and the $10,000 Idea
21(3)
2.3 Galalith-The Milk Stone
24(1)
2.4 Leo Baekeland and the Plastic Industry
25(2)
2.5 Herman Mark and the American Polymer Education
27(4)
2.6 Wallace Hume Carothers and Synthetic Polymers
31(3)
2.7 Polyethylene-A Product of Brain and Brawn
34(3)
2.8 The Super Fiber and the Woman who Invented it
37(1)
2.9 One last Word-Plastics
38(5)
3 Structure of Polymers
43(54)
3.1 Macromolecular Structure of Polymers
43(2)
3.2 Molecular Bonds and Inter-Molecular Attraction
45(1)
3.3 Molecular Weight
45(6)
3.4 Conformation and configuration of Polymer Molecules
51(4)
3.5 Arrangement of Polymer Molecules
55(13)
3.5.1 Thermoplastic Polymers
55(1)
3.5.2 Amorphous Thermoplastics
56(2)
3.5.3 Semi-Crystalline Thermoplastics
58(9)
3.5.4 Thermosets and Cross-Linked Flastorners
67(1)
3.6 Copolymers and Polymer Blends
68(3)
3.7 Polymer Additives
71(5)
3.7.1 Flame Retardants
71(2)
3.7.2 Stabilizers
73(1)
3.7.3 Antistatic Agents
74(1)
3.7.4 Fillers
74(1)
3.7.5 Blowing Agents
75(1)
3.8 Viscoelastic Behavior of Polymers
76(12)
3.8.1 Stress Relaxation Test
76(2)
3.8.2 Time-Temperature Superposition (WLF-Equational)
78(2)
3.8.3 The Boltzmann Superposition Principle
80(1)
3.8.4 Applying Linear Viscoelasticity to Describe the behavior of Polymers
81(7)
Examples
88(3)
Problems
91(3)
References
94(3)
4 Thermal Properties of Polymers
97(32)
4.1 Material Properties
100(16)
4.1.1 Thermal Conductivity
100(7)
4.1.2 Specific Heat
107(2)
4.1.3 Density
109(3)
4.1.4 Thermal Diffusivity
112(1)
4.1.5 Linear Coefficient of Thermal Expansion
113(2)
4.1.6 Thermal Penetration
115(1)
4.1.7 Glass Transition Temperature
115(1)
4.1.8 Melting Temperature
116(1)
4.2 Measuring Thermal Data
116(7)
4.2.1 Differential Thermal Analysis (DTA)
117(1)
4.2.2 Differential Scanning Calorimeter (DSC)
118(2)
4.2.3 Thermomechanical Analysis (TMA)
120(1)
4.2.4 Thermogravimetry (TGA)
121(1)
4.2.5 Density Measurements
122(1)
Examples
123(1)
Problems
124(4)
References
128(1)
5 Rheology of Polymer Melts
129(54)
5.1 Introduction
129(8)
5.1.1 Continuum Mechanics
129(2)
5.1.2 The Generalized Newtonian Fluid
131(2)
5.1.3 Normal Stresses in Shear Flow
133(1)
5.1.4 Deborah Number
134(3)
5.2 Viscous Flow Models
137(10)
5.2.1 The Power Law Model
137(2)
5.2.2 The Bird-Carreau-Yasuda Model
139(1)
5.2.3 The Bingham Fluid
140(1)
5.2.4 Elongational Viscosity
140(2)
5.2.5 Rheology of Curing Thermosets
142(4)
5.2.6 Suspension Rheology
146(1)
5.3 Simplified Flow Models Common in Polymer Processing
147(4)
5.3.1 Simple Shear Flow
148(1)
5 3 2 Pressure Flow Through a Slit
148(1)
5.3.3 Pressure Flow Through a Tube-Hagen-Poiseuille Flow
149(1)
5.3.4 Couette Flow
150(1)
5.4 Viscoelastic Flow Models
151(8)
5.4.1 Differential Viscoelastic Models
151(3)
5.4.2 Integral Viscoelastic Models
154(5)
5.5 Rheometry
159(11)
5.5.1 The Melt Flow Indexer
159(1)
5.5.2 The Capillary Viscometer
159(3)
5.5.3 Computing Viscosity Using the Bagley and Weissenberg-Rabinowitsch Equations
162(1)
5.5.4 Viscosity Approximation Using the Representative Viscosity Method
163(1)
5.5.5 The Cone-Plate Rheometer
164(2)
5.5.6 The Couette Rheometer
166(1)
5.5.7 Extensional Rheometry
167(3)
5.6 Surface Tension
170(4)
Examples
174(5)
Problems
179(1)
References
180(3)
Part II Influence of Processing on Properties 183(186)
6 Introduction to Processing
185(98)
6.1 Extrusion
185(17)
6.1.1 The Plasticating Extruder
188(11)
6.1.1.1 The Solids Conveying Zone
191(4)
6.1.1.2 The Melting Zone
195(2)
6.1.1.3 The Metering Zone
197(2)
6.1.2 Extrusion Dies
199(3)
6.1.2.1 Sheeting Dies
199(2)
6.1.2.2 Tubular Dies
201(1)
6.2 Mixing Processes
202(31)
6.2.1 Distributive Mixing
204(4)
6.2.1.1 Effect of Orientation
205(3)
6.2.2 Dispersive Mixing
208(6)
6.2.2.1 Break-Up of Particulate Agglomerates
208(3)
6.2.2.2 Break-Up of Fluid Droplets
211(3)
6.2.3 Mixing Devices
214(10)
6.2.3.1 Static Mixers
215(1)
6.2.3.2 Banbury Mixer
216(2)
6.2.3.3 Mixing in Single Screw Extruders
218(2)
6.2.3.4 Cokneader
220(1)
6.2.3.5 Twin Screw Extruders
221(3)
6.2.4 Energy Consumption During Mixing
224(1)
6.2.5 Mixing Quality and Efficiency
225(2)
6.2.6 Plasticization
227(6)
6.3 Injection Molding
233(12)
6.3.1 The Injection Molding Cycle
234(4)
6.3.2 The Injection Molding Machine
238(5)
6.3.2.1 The Plasticating and Injection Unit
238(1)
6.3.2.2 The Clamping Unit
239(2)
6.3.2.3 The Mold Cavity
241(2)
6.3.3 Related Injection Molding Processes
243(2)
6.4 Secondary Shaping
245(10)
6.4.1 Fiber Spinning
245(1)
6.4.2 Film Production
246(3)
6.4.2.1 Cast Film Extrusion
246(1)
6.4.2.2 Film Blowing
247(2)
6.4.3 Blow Molding
249(34)
6.4.3.1 Extrusion Blow Molding
249(2)
6.4.3.2 Injection Blow Molding
251(2)
6.4.3.3 Thermoforming
253(2)
6.5 Calendering
255(2)
6.6 Coating
257(3)
6.7 Compression Molding
260(2)
6.8 Foaming
262(2)
6.9 Rotational Molding
264(2)
Examples
266(9)
Problems
275(4)
References
279(4)
7 Anisotropy Development During Processing
283(38)
7.1 Orientation in the Final Part
283(14)
7.1.1 Processing Thermoplastic Polymers
283(9)
7.1.2 Processing Thermoset Polymers
292(5)
7.2 Predicting Orientation in the Final Part
297(15)
7.2.1 Planar Orientation Distribution Function
298(2)
7.2.2 Single Particle Motion
300(2)
7.2.3 Jeffery's Model
302(1)
7.2.4 Folgar-Tucker Model
303(1)
7.2.5 Tensor Representation of Fiber Orientation
304(17)
7.2.5.1 Predicting Orientation in Complex Parts Using Computer Simulation
306(6)
7.3 Fiber Damage
312(2)
Examples
314(2)
Problems
316(2)
References
318(3)
8 Solidification of Polymers
321(48)
8.1 Solidification of Thermoplastics
321(13)
8.1.1 Thermodynamics During Cooling
321(4)
8.1.2 Morphological Structure
325(1)
8.1.3 Crystallization
326(3)
8.1.4 Heat Transfer During Solidification
329(5)
8.2 Solidification of Thermosets
334(9)
8.2.1 Curing Reaction
334(2)
8.2.2 Cure Kinetics
336(4)
8.2.3 Heat Transfer During Cure
340(3)
8.3 Residual Stresses and Warpage of Polymeric Parts
343(19)
8.3.1 Residual Stress Models
346(7)
8.3.1.1 Residual Stress Model Without Phase Change Effects
349(1)
8.3.1.2 Model to Predict Residual Stresses with Phase Change Effects
350(3)
8.3.2 Other Simple Models to Predict Residual Stresses and Warpage
353(5)
8.3.2.1 Uneven Mold Temperature
354(1)
8.3.2.2 Residual Stress in a Thin Thermoset Part
355(2)
8.3.2.3 Anisotropy Induced Curvature Change
357(1)
8.3.3 Predicting Warpage in Actual Parts
358(4)
Examples
362(2)
Problems
364(2)
References
366(3)
Part III Engineering Design Properties 369(222)
9 Mechanical Behavior of Polymers
371(76)
9.1 Basic Concepts of Stress and Strain
371(2)
9.1.1 Plane Stress
372(1)
9.1.2 Plane Strain,
373(1)
9.2 The Short-Term Tensile Test
373(15)
9.2.1 Rubber Elasticity
373(6)
9.2.2 The Tensile Test and Thermoplastic Polymers
379(9)
9.3 Long-Term Tests
388(5)
9.3.1 Isochronous and Isometric Creep Plots
391(2)
9.4 Dynamic Mechanical Tests
393(5)
9.4.1 Torsion Pendulum
393(4)
9.4.2 Sinusoidal Oscillatory Test
397(1)
9.5 Viscoelastic Behavior of Polymers
398(9)
9.5.1 Kelvin Model,
399(2)
9.5.1.1 Kelvin Model Creep Response
400(1)
9.5.1.2 Kelvin Model Stress Relaxation
400(1)
9.5.1.3 Kelvin Model Strain Recovery
401(1)
9.5.1.4 Kelvin Model Dynamic Response
401(1)
9.5.2 Jeffrey Model
401(2)
9.5.2.1 Jeffrey Model Creep Response
402(1)
9.5.2.2 Jeffrey Model Stress Relaxation
403(1)
9.5.2.3 Jeffrey Model Strain Recovery
403(1)
9.5.3 Standard Linear Solid Model
403(2)
9.5.3.1 Standard Linear Solid Model Creep Response
404(1)
9.5.3.2 Standard Linear Solid Model Stress Relaxation
405(1)
9.5.4 Maxwell-Wiechert Model
405(2)
9.5.4.1 Maxwell-Wiechert Model Stress Relaxation
406(1)
9.5.4.2 Maxwell-Wiechert Model Dynamic Response
407(1)
9.6 Effects of Structure and Composition on Mechanical Properties
407(13)
9.6.1 Amorphous Thermoplastics
409(1)
9.6.2 Semi-Crystalline Thermoplastics
410(2)
9.6.3 Oriented Thermoplastics
412(6)
9.6.4 Cross-Linked Polymers
418(2)
9.7 Mechanical Behavior of Filled and Reinforced Polymers
420(9)
9.7.1 Anisotropic Strain-Stress Relation
422(1)
9.7.2 Aligned Fiber Reinforced Composite Laminates
423(3)
9.7.3 Transformation of Fiber Reinforced Composite Laminate Properties
426(3)
9.7.4 Reinforced Composite Laminates with a Fiber Orientation Distribution Function
429(1)
9.8 Strength Stability Under Heat
429(2)
Examples
431(9)
Problems
440(4)
References
444(3)
10 Failure and Damage of Polymers
447(74)
10.1 Fracture Mechanics
447(8)
10.1.1 Fracture Predictions Based on the Stress Intensity Factor
448(2)
10.1.2 Fracture Predictions Based on an Energy Balance
450(3)
10.1.3 Linear Viscoelastic Fracture Predictions Based on J-Integrals
453(2)
10.2 Short-Term Tensile Strength
455(12)
10.2.1 Brittle Failure
456(3)
10.2.2 Ductile Failure
459(5)
10.2.3 Failure of Highly Filled Systems or Composites
464(3)
10.3 Impact Strength
467(16)
10.3.1 Impact Test Methods
473(5)
10.3.2 Fracture Mechanics Analysis of Impact Failure
478(5)
10.4 Creep Rupture
483(5)
10.4.1 Creep Rupture Tests
484(3)
10.4.2 Fracture Mechanics Analysis of Creep Rupture
487(1)
10.5 Fatigue
488(11)
10.5.1 Fatigue Test Methods
488(10)
10.5.2 Fracture Mechanics Analysis of Fatigue Failure
498(1)
10.6 Friction and Wear
499(4)
10.7 Stability of Polymer Structures
503(2)
10.8 Environmental Effects on Polymer Failure
505(10)
10.8.1 Weathering
505(6)
10.8.2 Chemical Degradation
511(2)
10.8.3 Thermal Degradation of Polymers
513(2)
Examples
515(2)
Problems
517(1)
References
518(3)
11 Electrical Properties of Polymers
521(24)
11.1 Dielectric Behavior
521(11)
11.1.1 Dielectric Coefficient
521(3)
11.1.2 Mechanisms of Dielectrical Polarization
524(4)
11.1.3 Dielectric Dissipation Factor
528(4)
11.1.4 Implications of Electrical and Thermal Loss in a Dielectric
532(1)
11.2 Electric Conductivity
532(5)
11.2.1 Electric Resistance
532(2)
11.2.2 Physical Causes of Volume Conductivity
534(3)
11.3 Application Problems
537(6)
11.3.1 Electric Breakdown
537(3)
11.3.2 Electrostatic Charge
540(2)
11.3.3 Electrets
542(1)
11.3.4 Electromagnetic Interference Shielding (EMI Shielding)
542(1)
11.4 Magnetic Properties
543(1)
11.4.1 Magnetizability
543(1)
11.4.2 Magnetic Resonance
543(1)
References
544(1)
12 Optical Properties of Polymers
545(26)
12.1 Index of Refraction
545(3)
12.2 Photoelasticity and Birefringence
548(5)
12.3 Transparency, Reflection, Absorption, and Transmittance
553(6)
12.4 Gloss
559(1)
12.5 Color
560(3)
12.6 Infrared Spectroscopy
563(2)
12.7 Infrared Pyrometry
565(2)
12.8 Heating with Infrared Radiation
567(2)
References
569(2)
13 Permeability Properties of Polymers
571(14)
13.1 Sorption
571(2)
13.2 Diffusion and Permeation
573(6)
13.3 Measuring S, D and P
579(1)
13.4 Corrosion of Polymers and Cracking
580(3)
13.5 Diffusion of Polymer Molecules and Self-Diffusion
583(1)
References
584(1)
14 Acoustic Properties of Polymers
585(6)
14.1 Speed of Sound
585(2)
14.2 Sound Reflection
587(2)
14.3 Sound Absorption
589(1)
References
590(1)
Appendix 591(20)
Subject Index 611(7)
Author Index 618

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program