did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780132628174

Mechanical Behavior of Materials

by ;
  • ISBN13:

    9780132628174

  • ISBN10:

    0132628171

  • Format: Hardcover
  • Copyright: 1999-01-01
  • Publisher: Pearson College Div
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $118.00

Summary

Appropriate for senior/graduate level Mechanical Engineering and Materials Science/Engineering courses covering the mechanical behavior of materials. Provides a comprehensive treatment of the mechanical behavior of materials within a balanced mechanics-materials approach.

Table of Contents

PREFACE xiii
MATERIALS: STRUCTURE, PROPERTIES, AND PERFORMANCE
1(56)
1.1 Introduction
1(2)
1.2 Monolithic, Composite, and Hierarchical Materials
3(10)
1.3 Structure of Materials
13(31)
1.3.1 Crystal Structures
13(5)
1.3.2 Metals
18(7)
1.3.3 Ceramics
25(4)
1.3.4 Glasses
29(2)
1.3.5 Polymers
31(9)
1.3.6 Liquid Crystals
40(1)
1.3.7 Biomaterials
41(2)
1.3.8 Porous and Cellular Materials
43(1)
1.4 Theoretical Strength of a Crystal
44(10)
1.4.1 Theoretical Tensile Strength by Orowan's Method
45(3)
1.4.2 Theoretical Shear Stress
48(6)
Suggested Readings
54(1)
Exercises
55(2)
2 ELASTICITY AND VISCOELASTICITY
57(55)
2.1 Introduction
57(1)
2.2 Longitudinal Stress and Strain
58(5)
2.3 Shear Stress and Strain
63(3)
2.4 Poisson's Ratio
66(2)
2.5 More Complex States of Stress
68(3)
2.6 Graphical Solution of a Biaxial State of Stress: The Mohr Circle
71(5)
2.7 Pure Shear: Relationship between G and E
76(2)
2.8 Anisotropic Effects
78(8)
2.9 Elastic Properties of Polycrystals
86(3)
2.10 Elastic Properties of Materials
89(8)
2.10.1 Elastic Properties of Metals
90(1)
2.10.2 Elastic Properties of Ceramics
91(5)
2.10.3 Elastic Properties of Polymers
96(1)
2.11 Viscoelasticity
97(5)
2.11.1 Storage and Loss Moduli
99(3)
2.12 Rubber Elasticity
102(5)
Suggested Readings
107(1)
Exercises
108(4)
3 PLASTICITY
112(70)
3.1 Introduction
112(2)
3.2 Plastic Deformation in Tension
114(19)
3.2.1 Tensile Curve Parameters
121(1)
3.2.2 Necking
122(3)
3.2.3 Strain Rate Effects
125(8)
3.3 Plastic Deformation in Compression Testing
133(3)
3.4 The Bauschinger Effect
136(1)
3.5 Plastic Deformation of Polymers
137(4)
3.5.1 Stress-Strain Curves
137(1)
3.5.2 Glassy Polymers
138(1)
3.5.3 Semicrystalline Polymers
139(1)
3.5.4 Viscous Flow
139(1)
3.5.5 Adiabatic Heating
140(1)
3.6 Plastic Deformation of Glasses
141(5)
3.6.1 Microscopic Deformation Mechanism
143(1)
3.6.2 Temperature Dependence and Viscosity
144(2)
3.7 Flow, Yield, and Failure Criteria
146(12)
3.7.1 Maximum-Stress Criterion (Rankine)
147(1)
3.7.2 Maximum-Shear-Stress Criterion (Tresca)
147(1)
3.7.3 Maximum-Distortion-Energy or J(2) Criterion (von Mises)
148(1)
3.7.4 Graphical Representation and Experimental Verification of Rankine's, Tresca's, and von Mises' Criteria
148(4)
3.7.5 Failure Criteria for Brittle Materials
152(3)
3.7.6 Yield Criteria for Ductile Polymers
155(2)
3.7.7 Failure Criteria for Anisotropic Materials
157(1)
3.8 Hardness
158(10)
3.8.1 Macroindentation tests
160(4)
3.8.2 Microindentation tests
164(4)
3.9 Formability: Important Parameters
168(7)
3.9.1 Plastic Anisotropy
169(2)
3.9.2 Punch-Stretch Tests and Forming Limit Curves (or Keeler-Goodwin Diagrams)
171(4)
Suggested Readings
175(1)
Exercises
176(6)
4 IMPERFECTIONS: POINT AND LINE DEFECTS
182(65)
4.1 Point Defects
183(12)
4.1.1 Equilibrium of Point Defects
185(2)
4.1.2 Production of Point Defects
187(2)
4.1.3 Effect of Point Defects on Mechanical Properties
189(1)
4.1.4 Radiation Damage
190(3)
4.1.5 Ion Implantation
193(2)
4.2 Line Defects
195(48)
4.2.1 Experimental Observation of Dislocations
200(2)
4.2.2 Behavior of Dislocations
202(3)
4.2.3 Stress Field around Dislocations
205(2)
4.2.4 Energy of Dislocations
207(7)
4.2.5 Dislocations in Various Structures
214(9)
4.2.6 Dislocations in Ceramics
223(5)
4.2.7 Sources of Dislocation
228(5)
4.2.8 Dislocation Pileup
233(1)
4.2.9 Intersection of Dislocations
234(2)
4.2.10 Deformation Produced by Motion of Dislocations (Orowan's Equation)
236(2)
4.2.11 The Peierls-Nabarro Stress
238(2)
4.2.12 The Movement of Dislocations: Temperature and Strain Rate Effects
240(3)
Suggested Readings
243(1)
Exercises
244(3)
5 IMPERFECTIONS: INTERFACIAL AND VOLUMETRIC DEFECTS
247(44)
5.1 Grain Boundaries
247(17)
5.1.1 Tilt and Twist Boundaries
252(2)
5.1.2 Energy of a Grain Boundary
254(3)
5.1.3 Variation of Grain-Boundary Energy with Misorientation
257(2)
5.1.4 Coincidence Site Lattice (CSL) Boundaries
259(1)
5.1.5 Grain-Boundary Triple Junctions
259(1)
5.1.6 Grain-Boundary Dislocations and Ledges
260(1)
5.1.7 Grain Boundaries as a Packing of Polyhedral Units
261(3)
5.2 Twinning and Twin Boundaries
264(4)
5.2.1 Crystallography and Morphology
264(3)
5.2.2 Mechanical Effects
267(1)
5.3 Role of Grain Boundaries in Plastic Deformation
268(9)
5.3.1 Hall-Petch Theory
270(3)
5.3.2 Cottrell's Theory
273(1)
5.3.3 Li's Theory
274(1)
5.3.4 Meyers-Ashworth Theory
275(2)
5.4 Other Internal Obstacles
277(2)
5.5 Nanocrystalline Materials
279(2)
5.6 Volumetric or Tridimensional Defects
281(4)
5.7 Imperfections in Polymers
285(1)
Suggested Readings
286(1)
Exercises
287(4)
6 GEOMETRY OF DEFORMATION AND WORK-HARDENING
291(35)
6.1 Introduction
291(3)
6.2 Geometry of Deformation
294(14)
6.2.1 Stereographic Projections
294(3)
6.2.2 Stress Required for Slip
297(7)
6.2.3 Shear Deformation
304(1)
6.2.4 Slip Systems
304(3)
6.2.5 Independent Slip Systems in Polycrystals
307(1)
6.3 Work-Hardening
308(8)
6.3.1 Taylor's Theory
310(1)
6.3.2 Seeger's Theory
311(1)
6.3.3 Kuhlmann-Wilsdorf Theory
312(4)
6.4 Softening Mechanisms
316(3)
6.5 Texture Strengthening
319(3)
6.6 Suggested Readings
322(1)
Exercises
322(4)
7 FRACTURE: MACROSCOPIC ASPECTS
326(55)
7.1 Introduction
326(2)
7.2 Stress Concentration and Griffith Criterion of Fracture
328(7)
7.2.1 Stress Concentrations
328(1)
7.2.2 Stress Concentration Factor
329(6)
7.3 Griffith Criterion
335(4)
7.4 Crack Propagation with Plasticity
339(2)
7.5 Linear Elastic Fracture Mechanics
341(13)
7.5.1 Fracture Toughness
342(1)
7.5.2 Hypotheses of LEFM
343(1)
7.5.3 Crack-Tip Separation Modes
343(1)
7.5.4 Stress Field in an Isotropic Material in the Vicinity of a Crack Tip
343(1)
7.5.5 Details of the Crack-Tip Stress Field in Model
344(3)
7.5.6 Plastic-Zone Size Correction
347(4)
7.5.7 Variation in Fracture Toughness with Thickness
351(3)
7.6 Fracture Toughness Parameters
354(11)
7.6.1 Crack Extension Force G
354(3)
7.6.2 Crack Opening Displacement
357(3)
7.6.3 J Integral
360(3)
7.6.4 R Curve
363(1)
7.6.5 Relationships among Different Fracture Toughness Parameters
364(1)
7.7 Importance of K(ic) in Practice
365(2)
7.8 Postyield Fracture Mechanics
367(1)
7.9 Statistical Analysis of Failure Strength
368(9)
Suggested Readings
377(1)
Exercises
377(4)
8 FRACTURE: MICROSCOPIC ASPECTS
381(51)
8.1 Introduction
381(2)
8.2 Fracture in Metals
383(17)
8.2.1 Crack Nucleation
383(1)
8.2.2 Ductile Fracture
384(11)
8.2.3 Brittle, or Cleavage, Fracture
395(5)
8.3 Fracture in Ceramics
400(20)
8.3.1 Microstructural Aspects
400(8)
8.3.2 Effect of Grain Size on Strength of Ceramics
408(1)
8.3.3 Fracture in Ceramics in Tension
409(3)
8.3.4 Fracture in Ceramics under Compression
412(4)
8.3.5 Thermally Induced Fracture in Ceramics
416(4)
8.4 Fracture in Polymers
420(8)
8.4.1 Brittle Fracture
420(1)
8.4.2 Crazing and Shear Yielding
421(2)
8.4.3 Fracture in Semicrystalline and Crystalline Polymers
423(2)
8.4.4 Toughness of Polymers
425(3)
8.5 Fracture Mechanism Maps
428(2)
Exercises
430(2)
9 FRACTURE TESTING
432(31)
9.1 Introduction
432(1)
9.2 Impact Testing
432(7)
9.2.1 Charpy Impact Test
433(4)
9.2.2 Drop-Weight Test
437(1)
9.2.3 Instrumented Charpy Impact Test
437(2)
9.3 Plane-Strain Fracture Toughness Test
439(5)
9.4 Crack Opening Displacement Testing
444(1)
9.5 J-Integral Testing
445(1)
9.6 Flexure Test
446(6)
9.6.1 Three-Point Bend Test
448(1)
9.6.2 Four-Point Bend Test
448(1)
9.6.3 Interlaminar Shear Strength Test
449(3)
9.7 Fracture Toughness Testing of Brittle Materials
452(7)
9.7.1 Chevron Notch Test
452(3)
9.7.2 Indentation Methods for Determining Toughness
455(4)
Suggested Readings
459(1)
Exercises
459(4)
10 SOLID SOLUTION, PRECIPITATION, AND DISPERSION STRENGTHENING
463(34)
10.1 Introduction
463(1)
10.2 Solid-Solution Strengthening
464(6)
10.2.1 Elastic Interaction
466(4)
10.2.2 Other Interactions
470(1)
10.3 Mechanical Effects Associated with Solid Solutions
470(7)
10.3.1 Well-Defined Yield Point in the Stress-Strain Curves
471(1)
10.3.2 Plateau in the Stress-Strain Curve and Luders' Band
471(3)
10.3.3 Strain Aging
474(1)
10.3.4 Serrated Stress-Strain Curve
475(1)
10.3.5 Snoek Effect
476(1)
10.3.6 Blue Brittleness
477(1)
10.4 Precipitation- and Dispersion-Hardening
477(7)
10.5 Dislocation-Precipitate Interaction
484(5)
10.6 Precipitation in Microalloyed Steels
489(5)
Suggested Readings
494(1)
Exercises
495(2)
11 MARTENSITIC TRANSFORMATION
497(26)
11.1 Introduction
497(1)
11.2 Structures and Morphologies of Martensite
497(6)
11.3 Strength of Martensite
503(3)
11.4 Mechanical Effects
506(4)
11.5 Shape-Memory Effect
510(5)
11.6 Martensitic Transformation in Ceramics
515(5)
Suggested Readings
520(1)
Exercises
521(2)
12 INTERMETALLICS
523(17)
12.1 Silicides
523(2)
12.2 Ordered Intermetallics
525(13)
12.2.1 Dislocation Structures in Ordered Intermetallics
526(3)
12.2.2 Effect of Ordering on Mechanical Properties
529(6)
12.2.3 Ductility of Intermetallics
535(3)
Suggested Readings
538(1)
Exercises
539(1)
13 CREEP AND SUPERPLASTICITY
540(52)
13.1 Introduction
541(5)
13.2 Correlation and Extrapolation Methods
546(7)
13.3 Fundamental Mechanisms Responsible for Creep
553(1)
13.4 Diffusion Creep
553(4)
13.5 Dislocation Creep
557(3)
13.6 Dislocation Glide
560(2)
13.7 Grain-Boundary Sliding
562(1)
13.8 Deformation-Mechanism (Weertman-Ashby) Maps
563(3)
13.9 Heat-Resistant Materials
566(4)
13.10 Creep in Polymers
570(10)
13.11 Superplasticity
580(7)
Suggested Readings
587(1)
Exercises
587(5)
14 FATIGUE
592(45)
14.1 Fatigue Parameters and S-N Curves
593(1)
14.2 Fatigue Strength or Fatigue Life
593(2)
14.3 Effect of Mean Stress on Fatigue Life
595(3)
14.4 Cumulative Damage and Life Exhaustion
598(4)
14.5 Mechanisms of Fatigue
602(9)
14.5.1 Fatigue Crack Nucleation
602(5)
14.5.2 Fatigue Crack Propagation
607(4)
14.6 Linear Elastic Fracture Mechanics Applied to Fatigue
611(9)
14.7 Hysteretic Heating in Fatigue
620(1)
14.8 Fatigue Crack Closure
621(1)
14.9 The Two-Parameter Approach
622(1)
14.10 The Short-Crack Problem in Fatigue
623(1)
14.11 Fatigue Testing
624(7)
14.11.1 Conventional Fatigue Tests
625(1)
14.11.2 Rotating Bending Machine
625(1)
14.11.3 Statistical Analysis of S-N Curves
626(2)
14.11.4 Nonconventional Fatigue Testing
628(1)
14.11.5 Servohydraulic Machines
628(1)
14.11.6 Low-Cycle Fatigue Tests
629(1)
14.11.7 Fatigue Crack Propagation Testing
630(1)
Suggested Readings
631(1)
Exercises
632(5)
15 COMPOSITE MATERIALS
637(38)
15.1 Introduction
637(1)
15.2 Types of Composites
637(1)
15.3 Important Reinforcements and Matrix Materials
638(3)
15.3.1 Microstructural Aspects and Importance of the Matrix
639(2)
15.4 Interfaces in Composites
641(3)
15.4.1 Crystallographic Nature of the Fiber-Matrix Interface
641(1)
15.4.2 Interfacial Bonding in Composites
642(1)
15.4.3 Interfacial Interactions
642(2)
15.5 Properties of Composites
644(12)
15.5.1 Density and Heat Capacity
644(1)
15.5.2 Elastic Moduli
644(5)
15.5.3 Strength
649(3)
15.5.4 Anisotropic Nature of Fiber Reinforced Composites
652(1)
15.5.5 Aging Response of Matrix in MMCs
653(1)
15.5.6 Toughness
654(2)
15.6 Load Transfer from Matrix to Fiber
656(7)
15.6.1 Fiber and Matrix Elastic
657(4)
15.6.2 Fiber Elastic and Matrix Plastic
661(2)
15.7 Fracture in Composites
663(4)
15.7.1 Single and Multiple Fracture
663(1)
15.7.2 Failure Modes in Composites
664(3)
15.8 Some Fundamental Characteristics of Composites
667(2)
15.8.1 Heterogeneity
667(1)
15.8.2 Anisotropy
667(1)
15.8.3 Shear Coupling
668(1)
15.9 Functionally Graded Materials
669(1)
15.10 Applications
669(3)
15.10.1 Aerospace Applications
669(2)
15.10.2 Nonaerospace Applications
671(1)
Suggested Readings
672(1)
Exercises
672(3)
INDEX 675

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program