rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780415328685

Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics

by ;
  • ISBN13:

    9780415328685

  • ISBN10:

    0415328683

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2005-03-29
  • Publisher: CRC Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

List Price: $255.00 Save up to $198.90
  • Rent Book $172.13
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics [ISBN: 9780415328685] for the semester, quarter, and short term or search our site for other textbooks by Reeke; G. N.. Renting a textbook can save you up to 90% from the cost of buying.

Summary

Computational models of neural networks have proven insufficient to accurately model brain function, mainly as a result of simplifications that ignore the physical reality of neuronal structure in favor of mathematically tractable algorithms and rules. Even the more biologically based "integrate and fire" and "compartmental" styles of modeling suffer from oversimplification in the former case and excessive discretization in the second. This book introduces an integrative approach to modeling neurons and neuronal circuits that retains the integrity of the biological units at all hierarchical levels.With contributions from more than 40 renowned experts, Modeling in the Neurosciences, Second Edition is essential for those interested in constructing more structured and integrative models with greater biological insight. Focusing on new mathematical and computer models, techniques, and methods, this book represents a cohesive and comprehensive treatment of various aspects of the neurosciences from the molecular to the network level. Many state-of-the-art examples illustrate how mathematical and computer modeling can contribute to the understanding of mechanisms and systems in the neurosciences. Each chapter also includes suggestions of possible refinements for future modeling in this rapidly changing and expanding field.This book will benefit and inspire the advanced modeler, and will give the beginner sufficient confidence to model a wide selection of neuronal systems at the molecular, cellular, and network levels.

Table of Contents

Preface to the Second Edition vii
Contributors ix
Foreword xiii
About the Editors xv
Introduction to Modeling in the Neurosciences
1(8)
George N. Reeke
Patterns of Genetic Interactions: Analysis of mRNA Levels from cDNA Microarrays
9(16)
Larry S. Liebovitch
Lina A. Shehadeh
Viktor K. Jirsa
Calcium Signaling in Dendritic Spines
25(36)
William R. Holmes
Physiological and Statistical Approaches to Modeling of Synaptic Responses
61(28)
Parag G. Patil
Mike West
Howard V. Wheal
Dennis A. Turner
Natural Variability in the Geometry of Dendritic Branching Patterns
89(28)
Jaap van Pelt
Harry B.M. Uylings
Multicylinder Models for Synaptic and Gap-Junctional Integration
117(62)
Jonathan D. Evans
Voltage Transients in Branching Multipolar Neurons with Tapering Dendrites and Sodium Channels
179(22)
Loyd L. Glenn
Jeffrey R. Knisley
Analytical Solutions of the Frankenhaeuser-Huxley Equations Modified for Dendritic Backpropagation of a Single Sodium Spike
201(26)
Roman R. Poznanski
Inverse Problems for Some Cable Models of Dendrites
227(16)
Jonathan Bell
Equivalent Cables --- Analysis and Construction
243(36)
Kenneth A. Lindsay
Jay R. Rosenberg
Gayle Tucker
The Representation of Three-Dimensional Dendritic Structure by a One-Dimensional Model -- The Conventional Cable Equation as the First Member of a Hierarchy of Equations
279(34)
Kenneth A. Lindsay
Jay R. Rosenberg
Gayle Tucker
Simulation Analyses of Retinal Cell Responses
313(26)
Yoshimi Kamiyama
Akito Ishihara
Toshihiro Aoyama
Shiro Usui
Modeling Intracellular Calcium: Diffusion, Dynamics, and Domains
339(36)
Gregory D. Smith
Ephaptic Interactions Between Neurons
375(28)
Robert Costalat
Bruno Delord
Cortical Pyramidal Cells
403(32)
Roger D. Orpwood
Semi-Quantitative Theory of Bistable Dendrites with Potential-Dependent Facilitation of Inward Current
435(24)
Aron Gutman
Armantas Baginskas
Jorn Hounsgaard
Natasha Svirskiene
Gytis Svirskis
Bifurcation Analysis of the Hodgkin--Huxley Equations
459(20)
Shunsuke Sato
Hidekazu Fukai
Taishin Nomura
Shinji Doi
Highly Efficient Propagation of Random Impulse Trains Across Unmyelinated Axonal Branch Points: Modifications by Periaxonal K+ Accumulation and Sodium Channel Kinetics
479(52)
Mel D. Goldfinger
Dendritic Integration in a Two-Neuron Recurrent Excitatory Network Model
531(24)
Roman R. Poznanski
Spike-Train Analysis for Neural Systems
555(26)
David M. Halliday
The Poetics of Tremor
581(18)
G.P. Moore
Helen M. Bronte-Stewart
Principles and Methods in the Analysis of Brain Networks
599(14)
Olaf Sporns
The Darwin Brain-Based Automata: Synthetic Neural Models and Real-World Devices
613(26)
Jeffrey L. Krichmar
George N. Reeke
Toward Neural Robotics: From Synthetic Models to Neuromimetic Implementations
639(8)
Olaf Sporns
Bibliography 647(58)
Index 705

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program