rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780471571513

Multivariate Statistical Inference and Applications

by
  • ISBN13:

    9780471571513

  • ISBN10:

    0471571512

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1997-12-29
  • Publisher: Wiley-Interscience
  • View Upgraded Edition

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $245.27 Save up to $61.32
  • Buy Used
    $183.95
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Summary

The most accessible introduction to the theory and practice of multivariate analysis Multivariate Statistical Inference and Applications is a user-friendly introduction to basic multivariate analysis theory and practice for statistics majors as well as nonmajors with little or no background in theoretical statistics. Among the many special features of this extremely accessible first text on multivariate analysis are: * Clear, step-by-step explanations of all key concepts and procedures along with original, easy-to-follow proofs * Numerous problems, examples, and tables of distributions * Many real-world data sets drawn from a wide range of disciplines * Reviews of univariate procedures that give rise to multivariate techniques * An extensive survey of the world literature on multivariate analysis * An in-depth review of matrix theory * A disk including all the data sets and SAS command files for all examples and numerical problems found in the book These same features also make Multivariate Statistical Inference and Applications an excellent professional resource for scientists and clinicians who need to acquaint themselves with multivariate techniques. It can be used as a stand-alone introduction or in concert with its more methods-oriented sibling volume, the critically acclaimed Methods of Multivariate Analysis.

Author Biography

ALVIN C. RENCHER, PhD, is Professor of Statistics at Brigham Young University and a Fellow of the American Statistical Association. He is the author of Methods of Multivariate Analysis and has written articles for Biometrics, Technometrics, Biometrika, Communications in Statistics, and American Statistician.

Table of Contents

1. Some Properties of Random Vectors and Matrices
1(36)
1.1 Introduction
1(1)
1.2 Univariate and Bivariate Random Variables
2(4)
1.2.1 Univariate Random Variables
2(2)
1.2.2 Bivariate Random Variables
4(2)
1.3 Mean Vectors and Covariance Matrices for Random Vectors
6(5)
1.4 Correlation Matrices
11(1)
1.5 Partitioned Mean Vectors and Covariance Matrices
12(2)
1.6 Linear Functions of Random Variables
14(6)
1.6.1 Sample Means, Variances, and Covariances
14(5)
1.6.2 Population Means, Variances, and Covariances
19(1)
1.7 Measuring Intercorrelation
20(2)
1.8 Mahalanobis Distance
22(1)
1.9 Missing Data
23(4)
1.10 Robust Estimators of XXX and XXX
27(10)
2. The Multivariate Normal Distribution
37(23)
2.1 Univariate and Multivariate Normal Density Functions
37(6)
2.1.1 Univariate Normal
37(1)
2.1.2 Multivariate Normal
38(2)
2.1.3 Constant Density Ellipsoids
40(2)
2.1.4 Generating Multivariate Normal Data
42(1)
2.1.5 Moments
42(1)
2.2 Properties of Multivariate Normal Random Vectors
43(6)
2.3 Estimation of Parameters in the Multivariate Normal Distribution
49(7)
2.3.1 Maximum Likelihood Method
49(3)
2.3.2 Properties of y and S
52(1)
2.3.3 Wishart Distribution
53(3)
2.4 Additional Topics
56(4)
3. Hotelling's T(2)-Tests
60(61)
3.1 Introduction
60(1)
3.2 Test for H(0): XXX = XXX(0) with XXX Known
60(1)
3.3 Hotelling's T(2)-test for H(0): XXX = XXX(0) with XXX Unknown
61(13)
3.3.1 Univariate t-Test for H(0): XXX = XXX(0) with XXX(2) Unknown
61(1)
3.3.2 Likelihood Ratio Method of Test Construction
62(3)
3.3.3 One-Sample T(2)-Test
65(1)
3.3.4 Formal Definition of T(2) and Relationship to F
66(1)
3.3.5 Effect on T(2) of Adding a Variable
67(3)
3.3.6 Properties of the T(2)-Test
70(1)
3.3.7 Likelihood Ratio Test
71(1)
3.3.8 Union-Intersection Test
72(2)
3.4 Confidence Intervals and Tests for Linear Functions of XXX
74(11)
3.4.1 Confidence Region for XXX
74(1)
3.4.2 Confidence Interval for a Single Linear Combination a'XXX
74(1)
3.4.3 Simultaneous Confidence Intervals for XXX(j) and a'XXX
74(3)
3.4.4 Bonferroni Confidence Intervals for XXX(j) and a'XXX
77(2)
3.4.5 Tests for H(0): a'XXX = a'XXX(0) and H(0): XXX(j) = XXX(0j)
79(4)
3.4.6 Tests for H(0): CXXX = 0
83(2)
3.5 Tests of H(0): XXX(1) = XXX(2) Assuming XXX(1) = XXX(2)
85(7)
3.5.1. Review of Univariate Likelihood Ratio Test for H(0): XXX(1) = XXX(2) When XXX(2)(1) = XXX(2)(2)
85(2)
3.5.2. Test for H(0): XXX(1) = XXX(2) When XXX(1) = XXX(2)
87(1)
3.5.3. Effect on T(2) of Adding a Variable
87(4)
3.5.4. Properties of the Two-Sample T(2)-Statistic
91(1)
3.5.5. Likelihood Ratio and Union-Intersection Tests
91(1)
3.6. Confidence Intervals and Tests for Linear Functions of Two Mean Vectors
92(4)
3.6.1. Confidence Region for XXX(1) - XXX(2)
93(1)
3.6.2. Simultaneous Confidence Intervals for a'(XXX(1) - XXX(2)) and XXX(1j) - XXX(2j)
93(1)
3.6.3. Bonferroni Confidence Intervals for a'(XXX(1) - XXX(2)) and XXX(1j) - XXX(2j)
94(1)
3.6.4. Tests for H(0): a'(XXX(1) - XXX(2)) = a'XXX(0) and H(0j): XXX(1j) - XXX(2j) = 0
94(1)
3.6.5. Test for H(0): C(XXX(1) - XXX(2)) = 0
95(1)
3.7. Robustness of the T(2) -test
96(1)
3.7.1. Robustness to XXX(1) is not equal to XXX(2)
96(1)
3.7.2. Robustness to Nonnormality
96(1)
3.8. Paired Observation Test
97(2)
3.9. Testing H(0): XXX(1) = XXX(2) When XXX(1) is not equal to XXX(2)
99(5)
3.9.1. Univariate Case
99(1)
3.9.2. Multivariate Case
100(4)
3.10. Power and Sample Size
104(4)
3.11. Tests on a Subvector
108(4)
3.11.1. Two-Sample Case
108(2)
3.11.2. Step-Down Test
110(1)
3.11.3. Selection of Variables
111(1)
3.11.4. One-Sample Case
112(1)
3.12. Nonnormal Approaches to Hypothesis Testing
112(2)
3.12.1. Elliptically Contoured Distributions
112(1)
3.12.2. Nonparametric Tests
113(1)
3.12.3. Robust Versions of T(2)
114(1)
3.13. Application of T(2) In Multivariate Quality Control
114(7)
4. Multivariate Analysis of Variance
121(80)
4.1. One-Way Classification
121(14)
4.1.1. Model for One-Way Multivariate Analysis of Variance
121(1)
4.1.2. Wilks' Likelihood Ratio Test
122(5)
4.1.3. Roy's Union-Intersection Test
127(3)
4.1.4. The Pillai and Lawley-Hotelling Test Statistics
130(1)
4.1.5. Summary of the Four Test Statistics
131(1)
4.1.6. Effect of an Additional Variable on Wilks' XXX
132(2)
4.1.7. Tests on Individual Variables
134(1)
4.2. Power and Robustness Comparisons for the Four MANOVA Test Statistics
135(3)
4.3. Tests for Equality of Covariance Matrices
138(2)
4.4. Power and Sample Size for the Four MANOVA Tests
140(2)
4.5. Contrasts Among Mean Vectors
142(6)
4.5.1. Univariate Contrasts
142(3)
4.5.2. Multivariate Contrasts
145(3)
4.6. Two-Way Multivariate Analysis of Variance
148(3)
4.7. Higher Order Models
151(1)
4.8. Unbalanced Data
152(22)
4.8.1. Introduction
152(1)
4.8.2. Univariate One-Way Model
153(2)
4.8.3. Multivariate One-Way Model
155(5)
4.8.4. Univariate Two-Way Model
160(8)
4.8.5. Multivariate Two-Way Model
168(6)
4.9. Tests on a Subvector
174(4)
4.9.1. Testing a Single Subvector
174(3)
4.9.2. Step-Down Test
177(1)
4.9.3. Stepwise Selection of Variables
177(1)
4.10. Multivariate Analysis of Covariance
178(16)
4.10.1. Introduction
178(1)
4.10.2. Univariate Analysis of Covariance: One-Way Model with One Covariate
179(4)
4.10.3. Univariate Anlaysis of Covariance: Two-Way Model with One Covariate
183(3)
4.10.4. Additional Topics in Univariate Analysis of Covariance
186(1)
4.10.5. Multivariate Analysis of Covariance
187(7)
4.11. Alternative Approaches to Testing H(0): XXX(1) = XXX(2) = ... = XXX(k)
194(7)
5. Discriminant Functions for Descriptive Group Separation
201(29)
5.1. Introduction
201(1)
5.2. Two Groups
201(1)
5.3. Several Groups
202(4)
5.3.1. Discriminant Functions
202(3)
5.3.2. Assumptions
205(1)
5.4. Standardized Coefficients
206(1)
5.5. Tests of Hypotheses
207(3)
5.5.1. Two Groups
207(2)
5.5.2. Several Groups
209(1)
5.6. Discriminant Analysis for Higher Order Designs
210(1)
5.7. Interpretation of Discriminant Functions
210(6)
5.7.1. Standardized Coefficients and Partial F-Values
211(1)
5.7.2. Correlations between Variables and Discriminant Functions
211(4)
5.7.3. Other Approaches
215(1)
5.8. Confidence Intervals
216(1)
5.9. Subset Selection
216(3)
5.9.1. Discriminant Function Approach to Selection
217(1)
5.9.2. Stepwise Selection
217(1)
5.9.3. All Possible Subsets
218(1)
5.9.4. Selection in Higher Order Designs
218(1)
5.10. Bias in Subset Selection
219(2)
5.11. Other Estimators of Discriminant Functions
221(9)
5.11.1. Ridge Discriminant Analysis and Related Techniques
222(1)
5.11.2. Robust Discriminant Analysis
223(7)
6. Classification of Observations into Groups
230(36)
6.1. Introduction
230(1)
6.2. Two Groups
230(6)
6.2.1. Equal Population Covariance Matrices
230(2)
6.2.2. Unequal Population Covariance Matrices
232(1)
6.2.3. Unequal Costs of Misclassification
233(1)
6.2.4. Posterior Probability Approach
234(1)
6.2.5. Robustness to Departures from the Assumptions
234(1)
6.2.6. Robust Procedures
235(1)
6.3. Several Groups
236(4)
6.3.1. Equal Population Covariance Matrices
236(1)
6.3.2. Unequal Population Covariance Matrices
237(2)
6.3.3. Use of Linear Discriminant Functions for Classification
239(1)
6.4. Estimation of Error Rates
240(4)
6.5. Correcting for Bias in the Apparent Error Rate
244(3)
6.5.1. Partitioning the Sample
244(1)
6.5.2. Holdout Method
244(1)
6.5.3. Bootstrap Estimator
245(1)
6.5.4. Comparison of Error Estimators
245(2)
6.6. Subset Selection
247(4)
6.6.1. Selection Based on Separation of Groups
247(2)
6.6.2. Selection Based on Allocation
249(1)
6.6.3. Selection in the Heteroscedastic Case
250(1)
6.7. Bias in Stepwise Classification Analysis
251(3)
6.8. Logistic and Probit Classification
254(7)
6.8.1. The Logistic Model for Two Groups with XXX(1) = XXX(2)
254(2)
6.8.2. Comparison of Logistic Classification with Linear Classification Functions
256(2)
6.8.3. Quadratic Logistic Functions When XXX(1) is not equal to XXX(2)
258(1)
6.8.4. Logistic Classification for Several Groups
258(1)
6.8.5. Additional Topics in Logistic Classification
259(1)
6.8.6. Probit Classification
259(2)
6.9. Additional Topics in Classification
261(5)
7. Multivariate Regression
266(46)
7.1. Introduction
266(1)
7.2. Multiple Regression: Fixed x's
267(9)
7.2.1. Least Squares Estimators and Properties
267(1)
7.2.2. An Estimator for XXX(2)
268(1)
7.2.3. The Model in Centered Form
269(2)
7.2.4. Hypothesis Tests and Confidence Intervals
271(4)
7.2.5. R(2) in Fixed-x Regression
275(1)
7.2.6. Model Validation
275(1)
7.3. Multiple Regression: Random x's
276(3)
7.3.1. Model for Random x's
276(1)
7.3.2. Estimation of XXX(0), XXX(1) and XXX(2)
277(1)
7.3.3. R(2) in Random-x Regression
278(1)
7.3.4. Tests and Confidence Intervals
279(1)
7.4. Estimation in the Multivariate Multiple Regression Model: Fixed x's
279(10)
7.4.1. The Multivariate Model
279(2)
7.4.2. Least Squares Estimator for B
281(2)
7.4.3. Properties of B
283(2)
7.4.4. An Estimator for XXX
285(1)
7.4.5. Normal Model for the Y(i)'s
286(2)
7.4.6. The Multivariate Model in Centered Form
288(1)
7.4.7. Measures of Multivariate Association
289(1)
7.5. Hypothesis Tests in the Multivariate Multiple Regression Model: Fixed x's
289(11)
7.5.1. Test for Significance of Regression
289(4)
7.5.2. Test on a Subset of the Rows of B
293(2)
7.5.3. General Linear Hypotheses CB = O and CBM = O
295(2)
7.5.4. Tests and Confidence Intervals for a Single XXX(jk) and a Bilinear Function a'Bb
297(1)
7.5.5. Simultaneous Tests and Confidence Intervals for the XXX(jk)'s and Bilinear Functions a'Bb
298(1)
7.5.6. Tests in the Presence of Missing Data
299(1)
7.6. Multivariate Model Validation: Fixed x's
300(3)
7.6.1. Lack-of-Fit Tests
300(1)
7.6.2. Residuals
300(1)
7.6.3. Influence and Outliers
301(2)
7.6.4. Measurement Errors
303(1)
7.7. Multivariate Regression: Random x's
303(2)
7.7.1. Multivariate Normal Model for Random x's
303(1)
7.7.2. Estimation of XXX(0), B(1), and XXX
304(1)
7.7.3. Tests and Confidence Intervals in the Multivariate Random-x Case
305(1)
7.8. Additional Topics
305(7)
7.8.1. Correlated Response Methods
305(1)
7.8.2. Categorical Data
306(1)
7.8.3. Subset Selection
307(1)
7.8.4. Other Topics
307(5)
8. Canonical Correlation
312(25)
8.1. Introduction
312(1)
8.2. Canonical Correlations and Canonical Variates
312(6)
8.3. Properties of Canonical Correlations and Variates
318(2)
8.3.1. Properties of Canonical Correlations
318(2)
8.3.2. Properties of Canonical Variates
320(1)
8.4. Tests of Significance for Canonical Correlations
320(6)
8.4.1. Tests of Independence of y and x
320(4)
8.4.2. Test of Dimension of Relationship between the y's and the x's
324(2)
8.5. Validation
326(2)
8.6. Interpretation of Canonical Variates
328(3)
8.6.1. Standardized Coefficients
328(1)
8.6.2. Rotation of Canonical Variate Coefficients
328(1)
8.6.3. Correlations between Variables and Canonical Variates
329(2)
8.7. Redundancy Analysis
331(2)
8.8. Additional Topics
333(4)
9. Principal Component Analysis
337(40)
9.1. Introduction
337(1)
9.2. Definition and Properties of Principal Components
338(5)
9.2.1. Maximum Variance Property
338(2)
9.2.2. Principal Components as Projections
340(1)
9.2.3. Properties of Principal Components
341(2)
9.3. Principal Components as a Rotation of Axes
343(1)
9.4. Principal Components from the Correlation Matrix
344(3)
9.5. Methods for Discarding Components
347(5)
9.5.1. Percent of Variance
347(1)
9.5.2. Average Eigenvalue
348(1)
9.5.3. Scree Graph
348(1)
9.5.4. Significance Tests
349(3)
9.5.5. Other Methods
352(1)
9.6. Information in the Last Few Principal Components
352(1)
9.7. Interpretation of Principal Components
353(10)
9.7.1. Special Patterns in S or R
353(4)
9.7.2. Testing H(0): XXX = XXX(2) [(1 - p)I + pJ] and P(p) = (1 - p)I + pJ
357(2)
9.7.3. Additional Rotation
359(2)
9.7.4. Correlations between Variables and Principal Components
361(2)
9.8. Relationship Between Principal Components and Regression
363(8)
9.8.1. Principal Component Regression
364(6)
9.8.2. Latent Root Regression
370(1)
9.9. Principal Component Analysis with Grouped Data
371(1)
9.10. Additional Topics
372(5)
10. Factor Analysis
377(22)
10.1. Introduction
377(1)
10.2. Basic Factor Model
377(4)
10.2.1. Model and Assumptions
377(2)
10.2.2. Scale Invariance of the Model
379(1)
10.2.3. Rotation of Factor Loadings in the Model
380(1)
10.3. Estimation of Loadings and Communalities
381(5)
10.3.1. Principal Component Method
381(2)
10.3.2. Principal Factor Method
383(1)
10.3.3. Iterated Principal Factor Method
384(1)
10.3.4. Maximum Likelihood Method
384(1)
10.3.5. Other Methods
385(1)
10.3.6. Comparison of Methods
385(1)
10.4. Determining the Number of Factors, m
386(1)
10.5. Rotation of Factor Loadings
387(4)
10.5.1. Introduction
387(1)
10.5.2. Orthogonal Rotation
388(1)
10.5.3. Oblique Rotations
389(1)
10.5.4. Interpretation of the Factors
390(1)
10.6. Factor Scores
391(1)
10.7. Applicability of the Factor Analysis Model
392(1)
10.8. Factor Analysis and Grouped Data
393(1)
10.9. Additional Topics
394(5)
Appendix A. Review of Matrix Algebra 399(18)
A.1. Introduction 399(2)
A.1.1. Basic Definitions 399(1)
A.1.2. Matrices with Special Patterns 400(1)
A.2. Properties of Matrix Addition and Multiplication 401(3)
A.3. Partitioned Matrices 404(2)
A.4. Rank of Matrices 406(1)
A.5. Inverse Matrices 407(1)
A.6. Positive Definite and Positive Semidefinite Matrices 408(1)
A.7. Determinants 409(1)
A.8. Trace of a Matrix 410(1)
A.9. Orthogonal Vectors and Matrices 410(1)
A.10. Eigenvalues and Eigenvectors 411(1)
A.11. Eigenstructure of Symmetric and Positive Definite Matrices 412(2)
A.12. Idempotent Matrices 414(1)
A.13. Differentiation 414(3)
Appendix B. Tables
417(32)
Appendix C. Answers and Hints to Selected Problems 449(56)
Appendix D. About the Diskette 505(2)
Bibliography 507(42)
Index 549

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program