did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781905209262

Music and Acoustics From Instrument to Computer

by
  • ISBN13:

    9781905209262

  • ISBN10:

    1905209266

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2006-10-24
  • Publisher: Wiley-ISTE

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $197.28 Save up to $66.08
  • Rent Book $131.20
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

This overview on the nature of musical sounds, from their production by acoustic music instruments to synthesized sounds obtained with computers, includes topics such as sound propagation, Fourier and time-frequency analysis, psychoacoustics, analogue and digital-signal processing theory, computer science, and MP3 sound compression.

Author Biography

Philippe Guillaume is a professor of applied mathematics and musical acoustics at INSA Toulouse, France.

Table of Contents

Foreword 13(4)
Chapter 1. Sounds 17(48)
1.1. Sound propagation
17(10)
1.1.1. A look at the physical models
17(4)
1.1.1.1. Mass conservation
18(2)
1.1.1.2. The Euler equation
20(1)
1.1.1.3. The state equation
21(1)
1.1.2. The wave equation
21(2)
1.1.3. The Helmholtz equation
23(2)
1.1.4. Sound intensity
25(2)
1.2. Music theory interlude
27(4)
1.2.1. Intervals, octave
28(1)
1.2.2. Scientific pitch notation
28(1)
1.2.3. Dividing the octave into twelve semitones
28(1)
1.2.4. Diatonic scales
29(2)
1.2.4.1. Major scale
29(1)
1.2.4.2. Minor scales
30(1)
1.3. Different types of sounds
31(10)
1.3.1. Periodic sounds
32(3)
1.3.1.1. Fourier series
34(1)
1.3.2. Sounds with partials
35(1)
1.3.3. Continuous spectrum sounds
36(1)
1.3.4. Noise
37(4)
1.4. Representation of sound
41(8)
1.4.1. Time or frequency analysis, discrete Fourier transform
42(2)
1.4.2. Time-frequency analysis, the spectrogram
44(5)
1.5. Filtering
49(7)
1.5.1. Discrete spectrum
49(4)
1.5.1.1. Transfer function
50(1)
1.5.1.2. Impulse response
51(2)
1.5.2. Continuous spectrum
53(1)
1.5.3. Ideal low-pass, band-pass and all-pass filters
53(3)
1.6. Study problems
56(2)
1.6.1. Normal reflection on a wall (*)
56(1)
1.6.2. Comb filtering produced by a microphone located near a wall (**)
56(1)
1.6.3. Summing intensities (***)
57(1)
1.6.4. Intensity of a standing wave (**)
58(1)
1.6.5. Sound of a siren (*)
58(1)
1.7. Practical computer applications
58(7)
1.7.1. First sound, vectors
58(1)
1.7.2. Modifying the parameters: the command file
59(1)
1.7.3. Creating more complex sounds: using functions
60(1)
1.7.3.1. Noise and siren interlude
61(1)
1.7.4. Analysis
61(2)
1.7.4.1. Time analysis
62(1)
1.7.4.2. Frequency analysis
62(1)
1.7.4.3. Time-frequency analysis
63(1)
1.7.5. Filtering
63(2)
Chapter 2. Music Instruments 65(50)
2.1. Strings
66(6)
2.1.1. Free vibrations of a string
66(3)
2.1.2. Beats, chords and consonance
69(3)
2.2. Bars
72(5)
2.2.1. Bar fixed at both ends
73(2)
2.2.2. Bar clamped at one end
75(2)
2.3. Membranes
77(2)
2.4. Tubes
79(10)
2.4.1. Pressure control
81(4)
2.4.1.1. Response to a harmonic excitation
81(1)
2.4.1.2. The resonance effect
82(2)
2.4.1.3. Natural modes
84(1)
2.4.1.4. The resulting sound
84(1)
2.4.2. Speed control
85(3)
2.4.2.1. Response to a harmonic excitation
85(2)
2.4.2.2. Resonance and natural modes
87(1)
2.4.2.3. Comments on phases
87(1)
2.4.3. Tuning
88(1)
2.5. Timbre of instruments
89(9)
2.5.1. Nature of the spectrum
89(6)
2.5.1.1. Harmonics or partials, the piano's inharmonicity
90(1)
2.5.1.2. Richness in higher harmonics
91(2)
2.5.1.3. Different harmonics distributions
93(1)
2.5.1.4. The purpose of the resonator
94(1)
2.5.2. Envelope of the sound
95(3)
2.5.2.1. Calculation of the envelope
96(1)
2.5.2.2. Using several envelopes
97(1)
2.6. Study problems
98(12)
2.6.1. Vibrations of a string (general case) (**)
98(2)
2.6.2. Plucked string (*)
100(1)
2.6.3. Bow drawn across a string (*)
100(1)
2.6.4. String reduced to one degree of freedom (**)
101(1)
2.6.5. Coupled string-bridge system and the remanence effect (***)
102(2)
2.6.6. Calculation of the inharmonicity of a real string (***)
104(2)
2.6.7. Coincidence frequency of a wave in a board (***)
106(1)
2.6.8. Resonance of the bourdon (**)
107(1)
2.6.9. Resonance of a cylindrical dual controlled tube (**)
108(1)
2.6.10. Resonance of a conical tube (1) (**)
109(1)
2.6.11. Resonance of a conical tube (2) (**)
110(1)
2.7. Practical computer applications
110(5)
2.7.1. Create your synthesizer
110(2)
2.7.1.1. Write your instrument function
111(1)
2.7.1.2. Add an envelope
111(1)
2.7.1.3. And play your instrument
112(1)
2.7.2. Modify the timbre of your instrument
112(1)
2.7.3. Remanent sound
112(3)
Chapter 3. Scales and Temperaments 115(12)
3.1. The Pythagorean scale
116(1)
3.2. The Zarlino scale
117(1)
3.3. The tempered scales
118(3)
3.3.1. Equal temperament
119(1)
3.3.2. A historical temperament
119(1)
3.3.3. Equal temperament with perfect fifth
120(1)
3.3.4. The practice of tuners
120(1)
3.3.5. The practice of musicians
121(1)
3.4. A brief history of A4
121(1)
3.5. Giving names to notes
122(1)
3.6. Other examples of scales
123(1)
3.7. Study problems
123(2)
3.7.1. Frequencies of a few scales (***)
123(1)
3.7.2. Beats of the fifths and the major thirds (*)
123(2)
3.8. Practical computer applications
125(2)
3.8.1. Building a few scales
125(1)
3.8.2. Listening to beats
125(2)
Chapter 4. Psychoacoustics 127(14)
4.1. Sound intensity and loudness
127(3)
4.1.1. The phon
128(1)
4.1.2. The sone
129(1)
4.2. The ear
130(1)
4.3. Frequency and pitch
131(5)
4.3.1. The mel scale
132(1)
4.3.2. Composed sounds
133(1)
4.3.2.1. Pitch of sounds composed of harmonics
133(1)
4.3.2.2. Pitch of sounds composed of partials
133(1)
4.3.3. An acoustic illusion
134(2)
4.4. Frequency masking
136(2)
4.5. Study problems
138(1)
4.5.1. Equal-loudness levels (**)
138(1)
4.5.2. Frequency masking (**)
138(1)
4.5.3. Perpetually ascending sound (**)
138(1)
4.6. Practical computer applications
138(3)
4.6.1. Frequency masking
138(1)
4.6.2. Perpetually ascending scale
138(3)
Chapter 5. Digital Sound 141(28)
5.1. Sampling
143(12)
5.1.1. The Nyquist criterion and the Shannon theorem
145(7)
5.1.1.1. Case of a sinusoidal signal
145(2)
5.1.1.2. General case
147(1)
5.1.1.3. Consequences
148(1)
5.1.1.4. Theoretical impossibility
148(1)
5.1.1.5. What happens if the Nyquist criterion is not met?
148(4)
5.1.2. Quantization
152(2)
5.1.2.1. Error due to quantization
153(1)
5.1.3. Reconstruction of the sound signal
154(1)
5.2. Audio compression
155(5)
5.2.1. Psychoacoustic compression
155(4)
5.2.2. Entropy compression
159(1)
5.3. Digital filtering and the Z-transform
160(4)
5.3.1. Digital filtering
160(1)
5.3.2. The Z-transform
161(3)
5.3.2.1. Definition
161(1)
5.3.2.2. Effect of a delay
162(1)
5.3.2.3. Filtering and Z-transform
163(1)
5.4. Study problems
164(3)
5.4.1. Nyquist criterion (*)
164(1)
5.4.2. Aliasing of an ascending sound (*)
165(1)
5.4.3. Another example of reconstruction (***)
165(1)
5.4.4. Elementary filter bank (**)
166(1)
5.5. Practical computer applications
167(2)
5.5.1. Spectrum aliasing
167(1)
5.5.2. Quantization noise
168(1)
Chapter 6. Synthesis and Sound Effects 169(22)
6.1. Synthesis of musical sounds
170(5)
6.1.1. Subtractive synthesis
170(1)
6.1.2. Additive synthesis
171(1)
6.1.3. FM synthesis
171(3)
6.1.4. Synthesis based on the use of sampled sounds
174(1)
6.2. Time effects: echo and reverberation
175(4)
6.2.1. Simple echo
175(1)
6.2.2. Multiple echo
176(1)
6.2.3. Reverberation
177(2)
6.2.3.1. Using the impulse response
177(1)
6.2.3.2. Using echoes and all-pass filters
178(1)
6.3. Effects based on spectrum modification
179(7)
6.3.1. The 'Wah-wah' effect
180(2)
6.3.1.1. An example of a band-pass filter
180(2)
6.3.2. AM or FM type sound effects
182(4)
6.3.2.1. Vibrato
183(1)
6.3.2.2. Leslie effect
184(2)
6.4. Study problems
186(2)
6.4.1. The Doppler effect (**)
186(1)
6.4.2. FM and Chowning (***)
187(1)
6.5. Practical computer applications
188(3)
6.5.1. Sound synthesis
188(1)
6.5.2. Chowning synthesis
188(1)
6.5.3. Reverberation
189(1)
6.5.4. Vibrato
189(1)
6.5.5. The Leslie effect
189(2)
Bibliography 191(2)
Index 193

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program