rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780199636570

Mutation Detection A Practical Approach

by ; ;
  • ISBN13:

    9780199636570

  • ISBN10:

    0199636575

  • Format: Hardcover
  • Copyright: 1998-05-07
  • Publisher: Oxford University Press
  • View Upgraded Edition
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $112.00

Summary

Mutation detection is increasingly undertaken in a wide spectrum of research areas: in medicine it is fundamental in isolating disease genes and diagnosis, and is especially important in cancer research; in biology, commercially important genes can be identified by the mutations they contain. But mutation detection is time-consuming and expensive. This volume offers the latest tried and tested protocols for a range of detection methods, from the labs of the leading researchers in the field.

Table of Contents

List of Contributors xv(4)
Abbreviations xix
Introduction 1(5)
Sue Forrest
References 6(1)
1. Single-strand conformation polymorphism analysis
7(18)
Kenshi Hayashi
Youji Kukita
Masakazu Inazuka
Tomoko Tahira
1. Introduction
7(1)
2. PCR-SSCP using polyacrylamide slab gel
8(9)
PCR Optimization and primer design
10(1)
Pre-amplification and isolation by agarose gel electrophoresis
10(1)
PCR using [(32)P]deoxynucleotide triphosphate
11(1)
Removal of 3' appendage
12(1)
SSCP gel electrophoresis
13(2)
Interpretation of autoradiogram
15(1)
Re-amplification and direct sequencing
15(1)
Gel matrices other than polyacrylamide
16(1)
Restriction endonuclease fingerprinting and dideoxy fingerprinting
17(1)
3. Fluorescent SSCP in an automated DNA sequencer
17(6)
Primer design in post-PCR fluorescent labelling
18(1)
Fluorescent labelling by 3' exchange reaction
19(2)
SSCP in capillary electrophoresis (CE-SSCP)
21(2)
Data processing
23(1)
Acknowledgements
23(1)
References
23(2)
2. Single-stranded conformation polymorphism and heteroduplex analysis
25(10)
Bernard Gerrard
Michael Dean
1. Introduction
25(2)
2. Optimization of the PCR reaction
27(1)
3. SSCP sample prepration
28(1)
4. Optimization of SSCP/HA detection
29(2)
5. Multiplexing
31(1)
6. Interpretation of results
32(1)
7. Applications
33(1)
8. Other methods
33(1)
References
33(2)
3. Comprehensive mutation detection with denaturing gradient gel electrophoresis
35(28)
L.S. Lerman
Cherif Beldjord
1. Introduction
35(3)
The scope of DGGE, its distinctive capabilities, and the nature of results
35(3)
2. Background
38(1)
3. Basic principle, the physical properties of DNA
39(1)
4. Overview of the procedures in searching for mutants
40(3)
Defining segments for scrutiny
40(1)
Sample preparation
41(1)
Gradient and velocity separations
41(1)
Features of the gel patterns
42(1)
Discrimination of zygozygosity
42(1)
Comments
43(1)
5. Use of the psoralen cross-link as a clamp
43(2)
The psoralen protocol
44(1)
6. Computational tools
45(12)
What is a meltmap?
45(3)
Meltmap protocol
48(5)
Predicting electrophoretic separations
53(3)
Computer operations for MUTRAV
56(1)
7. Other members of the DGGE family
57(2)
Gel separations in a uniform, partially denaturing environment
57(1)
Capillary electrophoresis
57(1)
The thermal gradient
57(1)
The temperature ramp
58(1)
2D length and gradient separations
58(1)
8. End notes
59(1)
Acknowledgments
59(1)
References
59(4)
4. Cleavage using RNase to detect mutations
63(18)
H. Nagase
Y. Nakamura
1. Introduction
63(1)
2. RNase protection assay for mutation detection
64(15)
Evaluation of the sensitivity
64(3)
Source material
67(1)
PCR for RNase protection assay
68(1)
RNA probe preparation
69(4)
RNase protection
73(2)
Detection of digested probe
75(1)
Mutation detection by sequencing of the PCR products
76(2)
Other modified methodologies for mutation detection
78(1)
Acknowledgements
79(1)
References
79(2)
5. Cleavage of mismatched bases using chemical reagents
81(18)
Francesco Giannelli
Peter M. Green
Susan J. Ramus
1. Introduction
81(2)
2. Basic procedures
83(7)
Comments on the basic procedures
89(1)
3. Ultra fast chemical mismatch detection
90(6)
Labelling
90(1)
Solid phase
90(5)
Comments
95(1)
References
96(3)
6. Mutation detection using T4 endonuclease VII
99(14)
Rima Youil
1. Introduction
99(1)
2. The biology of Endo VII
99(3)
The role of Endo VII in vivo
99(1)
Characterization of Endo VII
99(1)
Action of Endo VII on heteroduplex DNA
100(2)
3. Use of Endo VII for mutation detection
102(5)
Enzyme mismatch cleavage
102(1)
Amplification of reference and target DNA
102(1)
Formation of heteroduplexes
103(2)
Endo VII digestion of heteroduplex DNA
105(1)
Analysis of cleavage products
105(2)
4. Fluorescent EMC
107(1)
5. Factors to consider in the EMC assay
107(2)
Incubation time and temperature
107(1)
Applicability of EMC to various genes and DNA types
107(1)
Sensitivity
107(1)
DNA fragment length
108(1)
Detection of multiple mutations within a single DNA fragment
108(1)
Stability of Endo VII
109(1)
6. Application to solid phase and non-radioactive format
109(1)
7. EMD(TM): a commercial kit
109(1)
8. Future prospects
110(1)
Acknowledgements
111(1)
References
111(2)
7. Detection of mutations by hybridization with sequence-specific oligonucleotide probes
113(18)
Randall K. Saiki
Henry A. Erlich
1. Introduction
113(2)
The two formats
113(1)
General considerations
114(1)
2. Immobilized specimen filters
115(5)
Designing solution-based sequence-specific oligonucleotide probes
115(1)
Preparation of immobilized specimen filters
116(1)
Immobilized specimen filter hybridization
117(2)
Reusing immobilized specimen filters
119(1)
3. Immobilized probe filters
120(6)
Designing immobilized sequence-specific oligonucleotide probes
122(1)
The probe tailing reaction
122(1)
Preparation of immobilized probe filters
123(1)
Immobilized probe filter hybridization
124(1)
Reusing immobilized probe filters
125(1)
4. DNA chips
126(1)
5. Applications
127(1)
6. Summary/perspectives
128(1)
References
129(2)
8. DNA detection and sequence distinction through oligonucleotide ligation
131(10)
Ulf Landegren
Martina Samiotaki
Marek Kwiatkowski
Juri Parik
Mats Nilsson
Anette Hagberg
Gisela Barbany
1. Introduction
131(1)
2. Background
132(1)
A brief history of ligation assays
132(1)
Target sequence distinction by DNA ligases
132(1)
The oligonucleotide ligation assay (OLA)
132(1)
3. DNA sequence distinction by PCR followed by OLA
133(4)
PCR amplification
133(1)
Ligation reaction
134(1)
Binding of ligation products to solid support
134(2)
Detection of ligation products
136(1)
4. Comments on the OLA protocol
137(1)
Design of ligation probes
137(1)
Detection by time-resolved fluorometry
137(1)
Properties of the oligonucleotide ligation assay
138(1)
References
138(3)
9. Detection of sequence variation using primer extension
141(20)
Ann-Christine Syvanen
1. Introduction
141(1)
2. Principle of the solid phase minisequencing method
142(1)
3. Design and synthesis of primers
142(2)
4. Guidelines for PCR amplification
144(1)
5. The solid phase minisequencing method in practice
145(5)
Affinity capture
145(1)
The minisequencing primer extension reaction
146(3)
Interpretation of the result
149(1)
6. Quantitative PCR analysis by solid phase minisequencing
150(2)
7. Minisequencing with colorimetric detection
152(2)
8. Multiplex, fluorescent minisequencing
154(3)
9. Conclusion
157(2)
References
159(2)
10. Selective amplification of specific alleles
161(28)
Cynthia D.K. Bottema
Steve S. Sommer
1. Introduction
161(2)
Principle
161(2)
2. Parameters of PASA
163(3)
Point of mismatch and oligonucleotide length
163(2)
Detection limit
165(1)
3. PASA protocol
166(7)
DNA extraction
167(1)
PCR amplification of specific alleles
168(2)
Optimization of PASA
170(3)
4. Implementation of PASA
173(5)
Generality of PASA
174(1)
Applications
175(3)
5. Modifications of PASA
178(8)
Simultaneous detection of allele-specific products
179(4)
Sensitivity of PASA
183(2)
Other adaptations of PASA
185(1)
6. Conclusions
186(1)
References
186(3)
11. The protein truncation test (PTT)
189(22)
Rob B. van der Luijt
Riccardo Fodde
Johan T. den Dunnen
1. Introduction
189(1)
2. Mutation detection using PTT
189(10)
3. Strategy
199(2)
Forward primer
200(1)
Reverse primer
200(1)
Segmented set
200(1)
4. Examples
201(4)
PTT using genomic samples; FAP
201(1)
PTT using RNA samples: DMD/BMD
202(3)
5. Examples
205(2)
Contaminations
205(1)
No amplification
205(1)
No translation products
205(1)
Background translation products
206(1)
Missing mutations
206(1)
6. Conclusions
207(2)
References
209(2)
12. Functional assay of the p53 tumour suppressor gene
211(12)
Thierry Frebourg
Jean-Michel Flaman
Anne Estreicher
Richard Iggo
1. Introduction
211(1)
2. Detection of human p53 mutations in yeast
212(1)
3. Overview of the assay
212(4)
mRNA extraction
212(3)
cDNA synthesis
215(1)
PCR amplification of p53 cDNA
215(1)
4. Yeast transformation
216(3)
5. Interpretation of results
219(1)
6. Conclusion
220(1)
Acknowledgements
221(1)
References
221(2)
13. Advances in direct DNA sequencing for mutation scanning
223(14)
Joakim Lundeberg
Cecilia Williams
Asfhin Ahmadian
Mathias Uhlen
1. Introduction
223(1)
2. Solid phase sequencing
224(1)
3. Solid phase DNA sequencing for p53 mutation scanning
225(6)
Sample preparation
225(1)
Nested multiplex in vitro amplification
226(5)
4. DNA sequencing of the amplified fragments
231(3)
5. Discussion
234(1)
Acknowledgements
235(1)
References
235(2)
List of Suppliers 237(4)
Index 241

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program