did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780849316531

Nanoengineering Of Structural, Functional And Smart Materials

by ;
  • ISBN13:

    9780849316531

  • ISBN10:

    0849316537

  • Format: Hardcover
  • Copyright: 8/29/2005
  • Publisher: CRC Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $300.00 Save up to $250.52
  • Rent Book $210.00
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

In chapters contributed by 24 nanotechnology laboratories, this book combines wide-ranging research relevant to the development of multifunctional materials, focusing on synthesis, manufacturing techniques, and modeling. It defines functional materials and discusses techniques that are designed to improve material properties, durability, multifunctionality, and adaptability. It also examines sensors and actuators fabricated from nanostructured microdevices for structural health and performance monitoring. The authors emphasize the current and potential commercial applications of nanoengineered smart materials, such as nanocoatings to create "artificial skin" and functionalized nanotubes used for enhancing the properties of composite materials and for hydrogen sensing and storage.

Table of Contents

Chapter 1 Introduction to Nanoengineering 1(14)
John F. Maguire and David B. Mast
1.1 Thermodynamic and Statistical Foundations of Small Systems
2(2)
1.2 Definitions
4(7)
1.2.1 Characterization and Metrology Needs
5(4)
1.2.2 Computer Modeling Needs
9(2)
1.3 Boundaries for Nanoscience and Technology
11(1)
1.4 Some Final Thoughts
11(1)
References
12(3)
PART 1 Synthesis of Nanoscale Materials
Chapter 2 Design of Nanostructured Materials
15(42)
Debasish Banerjee, Jingyu Lao, and Zhifeng Ren
2.1 Introduction
15(1)
2.2 Motivation, Background, and Strategies
16(3)
2.3 Experimental Setup
19(1)
2.4 Results and Discussion
20(28)
2.4.1 ZnO Nanostructures and Their Properties
20(9)
2.4.2 The In2O3 Nanocrystal Chain and Nanowire Circuit
29(5)
2.4.3 Zn-In-O Hierarchical Nanostructures
34(12)
2.4.4 Zn-Sn-O Hierarchical Nanostructures
46(2)
2.4.5 Zn-In-Ge-O Quaternary Hierarchical Nanostructures
48(1)
2.5 Large Quantity Nanostructures
48(4)
2.6 Concluding Remarks
52(1)
Problems
52(1)
References
53(4)
Chapter 3 Carbon Nanotubes and Bismuth Nanowires
57(42)
Mildred S. Dresselhaus, Ado Jorio, and Oded Rabin
3.1 Introduction
57(1)
3.2 Carbon Nanotubes
58(16)
3.2.1 Overview
58(3)
3.2.2 Nanotube Synthesis
61(4)
3.2.3 Nanotube Characterization
65(1)
3.2.4 Raman Spectroscopy
65(6)
3.2.5 Other Photophysical Techniques
71(2)
3.2.6 Future Directions for Nanotube Development
73(1)
3.3 Bismuth Nanowires
74(18)
3.3.1 Bismuth Nanowire Synthesis
75(3)
3.3.2 Structural Characterization
78(4)
3.3.3 Electronic Characterization
82(8)
3.3.4 Optical Characterization
90(1)
3.3.5 Future Directions for Bismuth Nanowires
91(1)
3.3.6 Concluding Remarks
91(1)
Acknowledgments
92(1)
Problems
92(1)
References
93(6)
Chapter 4 Nanobelts and Nanowires of Functional Oxides
99(26)
Xudong Wang and Zhong Lin Wang
4.1 Introduction
99(1)
4.2 The Nanobelt: What Is It?
100(1)
4.3 Techniques for Growing Nanobelts/Nanowires
100(4)
4.3.1 Thermal Evaporation
101(2)
4.3.2 Laser Ablation–Assisted CVD
103(1)
4.4 Growth Mechanisms
104(2)
4.5 The Nanobelt Family
106(2)
4.5.1 Binary Oxide Nanobelts
106(1)
4.5.2 Compound Semiconductor Nanobelts
107(1)
4.5.3 Multielement Nanobelts
107(1)
4.6 Ultra-Narrow ZnO Nanobelts
108(3)
4.7 Mesoporous ZnO Nanowires
111(2)
4.8 Patterned Growth of Aligned ZnO Nanowires
113(3)
4.9 Selected Applications of Nanobelts
116(4)
4.9.1 Nanocantilevers
116(1)
4.9.2 Field-Effect Transistors
116(3)
4.9.3 Nanosensors
119(1)
4.10 Summary
120(1)
Problems
120(1)
Acknowledgments
121(1)
References
121(4)
Chapter 5 Advances in Chemical Vapor Deposition of Carbon Nanotubes
125(34)
Vesselin N. Shanov, Atul Miskin, Sachin Jain, Peng He, and Mark J. Schulz
5.1 The CVD Technique for Growth of CNT
125(3)
5.2 CVD Growth System
128(3)
5.3 Catalyst and Substrate Preparation
131(1)
5.4 Growth of CNT
132(7)
5.5 Purification of As-Grown CNT
139(1)
5.6 Characterization of CNT
140(7)
5.6.1 Scanning Electron Microscopy
140(2)
5.6.2 Transmission Electron Microscopy
142(2)
5.6.3 Raman Spectroscopy
144(3)
5.7 Advanced Topics and Future Directions for CVD of CNT
147(6)
5.7.1 Synthesis of Long Carbon Nanotubes
148(1)
5.7.2 Design and Fabrication of a Segment for CNT Actuator
149(1)
5.7.3 Oriented Growth of a Simple CNT Network
150(1)
5.7.4 Functionalization of CNT
151(2)
5.8 Conclusions
153(1)
Problems
154(1)
Acknowledgments
154(1)
References
154(5)
Chapter 6 Self-Assembled Au Nanodots in a ZnO Matrix: A Novel Way to Enhance Electrical and Optical Characteristics of ZnO Films
159(10)
Ashutosh Tiwari and Jagdish Narayan
6.1 Introduction
160(1)
6.1.1 Nanostructured Materials
160(1)
6.1.2 Transparent and Conducting ZnO
160(1)
6.1.3 Au Nanodots in a ZnO Matrix
161(1)
6.2 Experimental Procedure
161(2)
6.2.1 Pulsed Laser Deposition
161(1)
6.2.2 Experimental Setup
161(1)
6.2.3 Target Arrangement
162(1)
6.2.4 Growth Parameters
162(1)
6.2.5 Characterization
163(1)
6.3 Results and Discussion
163(4)
6.3.1 Structural
163(1)
6.3.2 Optical
164(2)
6.3.3 Electrical
166(1)
6.4 Conclusion
167(1)
Problems
167(1)
Acknowledgments
167(1)
References
167(2)
Chapter 7 Synthesis of Boron Nitride Nanotubes Using a Ball-Milling and Annealing Method
169(30)
Ying Chen and Jim S. Williams
7.1 Introduction
169(6)
7.1.1 Boron Nitride Nanotubes
170(2)
7.1.2 High-Energy Ball Milling (HEBM)
172(3)
7.2 Synthesis of BN Nanotubes from Elemental B
175(8)
7.2.1 Milling with a Rotating Steel Mill
175(6)
7.2.2 Milling with a Vibrating Ceramic Mill
181(2)
7.3 Synthesis of BN Nanotubes from BN Compounds
183(4)
7.4 Formation Mechanism Discussion
187(3)
7.4.1 Separate Nucleation and Growth
187(1)
7.4.2 Nucleation Structures
187(2)
7.4.3 The Growth Process
189(1)
7.5 Summary
190(1)
Problems
191(1)
Acknowledgments
191(1)
References
191(8)
PART 2 Manufacturing Using Nanoscale Materials
Chapter 8 Plasma Deposition of Ultra-Thin Functional Films on Nanoscale Materials
199(26)
Peng He and Donglu Shi
8.1 Introduction
199(1)
8.2 The Plasma-Coating Technique
200(1)
8.3 Applications and Characterization
201(14)
8.3.1 Plasma Polymer Films Deposited on ZnO Particles
201(4)
8.3.2 Plasma Coating of Magnetic Nanoparticles
205(2)
8.3.3 Copolymer Coating of YYbErO2S
207(1)
8.3.4 Plasma Coating of Carbon Nanofibers
208(4)
8.3.5 Plasma Coating of an Aligned Carbon Nanotube Array
212(3)
8.4 Processing and Characterization of Nanocomposite Materials
215(5)
8.5 Summary
220(1)
Problems
221(1)
References
222(3)
Chapter 9 Structural Nanocomposites
225(22)
Hassan Mahfuz
9.1 Introduction
225(2)
9.2 Matrix Modification
227(13)
9.2.1 Ultrasonic Mixing
227(1)
9.2.2 Manufacturing of Nanocomposites
228(1)
9.2.3 Micron- and Nanosized SiC Particle Infusion
229(2)
9.2.4 Thermal Analysis of Carbon/Epoxy Nanocomposites
231(3)
9.2.5 Mechanical Tests
234(4)
9.2.6 Fatigue Tests
238(2)
9.3 Nanophased Filaments
240(1)
9.4 Core Modification
241(1)
9.5 Summary
242(1)
Problems
243(1)
References
243(4)
Chapter 10 Synthesis and Characterization of Metal-Ceramic Thin-Film Nanocomposites with Improved Mechanical Properties
247(16)
Dhanjay Kumar, Jagannathan Sankar, and Jagdish Narayan
10.1 Introduction
247(1)
10.2 Theory of Pulsed Laser Deposition
248(6)
10.3 Experimental Procedure
254(1)
10.4 Results and Discussion
255(4)
10.4.1 Mechanical Properties
255(2)
10.4.2 Structural Characterization
257(2)
10.5 Conclusions
259(1)
Problems
259(1)
Acknowledgments
259(1)
References
260(3)
Chapter 11 Macroscopic Fibers of Single-Walled Carbon Nanotubes
263(22)
Virginia A. Davis and Matteo Pasquali
11.1 Introduction
263(1)
11.2 Fibers Produced Directly from SWNT Synthesis
264(2)
11.3 Electrophoretic Spinning
266(1)
11.4 Conventional Fiber Spinning
266(13)
11.4.1 Melt-Spun Composite Fibers
268(2)
11.4.2 Solution-Spun SWNT Fibers
270(1)
11.4.2.1 SWNT/Liquid Crystalline Polymer Composite Fibers
270(1)
11.4.2.2 Fibers Produced from SWNT/Surfactant Dispersions
271(1)
11.4.2.3 Fibers Produced from SWNT/Superacid Dispersions
276(3)
11.5 Conclusion
279(1)
Problems
279(1)
Acknowledgments
279(1)
References
280(5)
Chapter 12 Carbon Nanofiber and Carbon Nanotube/Polymer Composite Fibers and Films
285(30)
Han Gi Chae, Tetsuya Uchida, and Satish Kumar
12.1 Introduction
286(1)
12.2 Vapor-Grown Carbon Nanofibers (VGCNFs) and Polymer Composite Fibers
287(6)
12.2.1 PBZT--VGCNF Composite Fibers
289(1)
12.2.2 PP-VGCNF Composite Fibers
289(1)
12.2.3 PET-VGCNF Composite Fibers
290(2)
12.2.4 PMMA-VGCNF Composite Fibers
292(1)
12.3 Carbon Nanotubes (CNTs) and Polymer Composite Fibers
293(9)
12.3.1 PBO-SWNT Fibers
293(1)
12.3.2 PAN-SWNT Composite Fibers and Films
294(1)
12.3.2.1 PAN-SWNT Composite Fibers
294(1)
12.3.2.2 Oxidative Stabilization of PAN-SWNT Composite Fibers
297(1)
12.3.2.3 PAN-SWNT Composite Films
299(1)
12.3.3 Polyvinyl Alcohol (PVA)/SWNT Composite Fibers and Films
300(1)
12.3.3.1 PVA-SWNT Composite Fibers
300(1)
12.3.3.2 PVA-SWNT Composite Films
300(1)
12.3.4 PMMA-SWNT Composite Fibers
301(1)
12.4 Additional Aspects of CNT-Polymer Composites
302(5)
12.4.1 Cross-linking of SWNTs by Oxidation and Effect of Nitric Acid Treatment
302(2)
12.4.2 Crystallization Behavior of Polymer with SWNT
304(1)
12.4.3 Effect of SWNT Exfoliation and Orientation
305(2)
12.5 Polymer/SWNT Application (Supercapacitor)
307(2)
12.6 Concluding Remarks
309(1)
Acknowledgments
310(1)
References
310(5)
Chapter 13 Surface Patterning Using Self-Assembled Monolayers: A Bottom-Up Approach to the Fabrication of Microdevices
315(12)
Lakshmi Supriya and Richard O. Claus
13.1 Introduction
315(2)
13.2 Experimental Procedure
317(1)
13.2.1 Materials
317(1)
13.2.2 Substrate Preparation
317(1)
13.2.3 Deposition of SAM
318(1)
13.2.4 Patterning
318(1)
13.2.5 Deposition of Multilayers
318(1)
13.3 Results and Discussion
318(6)
13.3.1 Patterning on Silicon
318(2)
13.3.2 Patterning on Polyethylene and Kapton®
320(4)
13.4 Conclusions and Applications
324(1)
Problems
324(1)
Acknowledgments
324(1)
References
324(3)
Chapter 14 Enhancement of the Mechanical Strength of Polymer-Based Composites Using Carbon Nanotubes
327(20)
Kin-Tak Lau, Jagannathan Sankar, and David Hui
14.1 Introduction
327(1)
14.2 Properties of Carbon Nanotubes
328(8)
14.2.1 Experimental Measurements
328(2)
14.2.2 Theoretical Study and Molecular Dynamics Simulation
330(5)
14.2.3 Finite Element Modeling
335(1)
14.3 Fabrication Processes of Nanotube/Polymer Composites
336(2)
14.4 Interfacial Bonding Properties of Nanotube/Polymer Composites
338(5)
14.4.1 Experimental Investigation
338(2)
14.4.2 Theoretical Study and Molecular Dynamics Simulation
340(3)
14.5 Concluding Remarks
343(1)
Problems
343(1)
Acknowledgments
344(1)
References
344(3)
Chapter 15 Nanoscale Intelligent Materials and Structures
347(62)
Yun Yeo-Heung, Inpil Kang, Sachin Jain, Atul Miskin, Suhasini Narasimhadevara, Goutham Kirkeria, Vishal Shinde, Sri Laxmi Pammi, Saurabh Datta, Peng He, Douglas Hurd, Mark J. Schulz, Vesselin N. Shanov, Donglu Shi, F. James Boerio, and Mannur J. Sundaresan
15.1 Introduction
348(5)
15.2 Review of Smart Materials
353(2)
15.3 Nanotube Geometric Structures
355(4)
15.3.1 Structures of Carbon Nanotubes
355(1)
15.3.2 Structures of Noncarbon Nanotubes
356(1)
15.3.3 Designations of Nanotubes and Nanostructured Materials
357(2)
15.4 Mechanical and Physical Properties of Nanotubes
359(8)
15.4.1 Elastic Properties
359(1)
15.4.2 Electrical Conductivity
360(1)
15.4.3 Magnetoresistance
361(1)
15.4.4 Piezoresistance
361(1)
15.4.5 Electrokinetics of Nanotubes
362(1)
15.4.6 Piezoelectric Properties
363(1)
15.4.7 Electrochemical Effects
364(1)
15.4.8 Nanotube Power Generation
365(1)
15.4.9 Nanotube Contact Phenomena
365(2)
15.5 Review of Nanoscale Sensors and Actuators
367(5)
15.5.1 Simulation of Nanotube Structures
367(2)
15.5.2 Nanotube Strain Sensors
369(1)
15.5.3 Actuators Based on Nanoscale Materials
369(1)
15.5.3.1 Carbon Nanotube Electrochemical Actuators
369(1)
15.5.3.2 Thermally Activated Actuators
370(1)
15.5.3.3 Piezoelectric and Nanotweezer Actuators
370(1)
15.5.3.4 Shape Memory Alloy and Platinum Nanoscale Actuators
371(1)
15.5.3.5 Biological Molecular Actuators
371(1)
15.6 Manufacturing of Carbon Nanotube and Nanofiber Intelligent Materials
372(17)
15.6.1 Synthesis of Nanotubes
372(1)
15.6.2 Functionalization of Nanotubes
373(1)
15.6.3 Casting Nanotubes and Nanofibers in Structural Polymer Electrolyte
373(2)
15.6.4 Carbon Nanotube Composite Strain Sensors
375(2)
15.6.5 Carbon Nanotube-Based Biosensors
377(5)
15.6.6 Carbon Nanotube and Nanofiber Hybrid Actuators
382(7)
15.7 Future Directions for Intelligent Materials
389(7)
15.7.1 Carbon Structural Neural Systems
389(3)
15.7.2 High-Temperature Nanoscale Materials
392(1)
15.7.3 Power Harvesting Using Carbon Nanotubes
393(1)
15.7.4 Intelligent Machines
394(2)
15.7.5 Telescoping Carbon Nanotubes
396(1)
15.8 Conclusions
396(1)
Problems
396(1)
Acknowledgments
397(1)
References
397(12)
Chapter 16 Thermal Properties and Microstructures of Polymer Nanostructured Materials
409(34)
Joseph H. Koo and Louis A. Pilato
16.1 Introduction
409(1)
16.2 Selection of Nanoparticles
410(6)
16.2.1 Montmorillonite Nanoclays
410(1)
16.2.2 Carbon Nanofibers (CNFs)
411(4)
16.2.3 Polyhedral Oligomeric Silsesquioxane (POSS)
415(1)
16.3 Discussion of Results
416(23)
16.3.1 TEM Analyses of Nanoparticles
416(2)
16.3.2 Fire-Retardant Nanocomposite Coatings
418(2)
16.3.3 Nanostructured Materials for Propulsion Systems
420(3)
16.3.4 Nanocomposite Rocket Ablative Materials
423(8)
16.3.5 Nanomodified Carbon/Carbon Composites
431(8)
16.4 Summary and Conclusions
439(1)
Problems
439(1)
Acknowledgments
440(1)
References
440(3)
Chapter 17 Manufacturing, Mechanical Characterization, and Modeling of a Pultruded Thermoplastic Nanocomposite
443(26)
Samit Roy, Kalivarathan Vengadassalam, Earzana Hussain, and Hongbing Lu
17.1 Introduction
444(3)
17.1.1 Nanoclays
444(1)
17.1.2 Montmorillonite
445(1)
17.1.3 Dispersion of Montmorillonite Clay Platelets in Polypropylene
445(1)
17.1.4 Compression Strength of Nanocomposites
446(1)
17.2 Experimental Procedure
447(4)
17.2.1 Materials
447(1)
17.2.2 Processing of Fiber—Reinforced Nanocomposites
448(1)
17.2.2.1 Thermoplastic Pultrusion Process
448(1)
17.2.2.2 Process Parameter Control
449(1)
17.2.3 Mechanical Test Methodology
450(1)
17.3 Nanocomposite Morphology
451(1)
17.3.1 Transmission Electron Microscopy (TEM)
451(1)
17.3.2 Scanning Electron Microscopy (SEM)
452(1)
17.4 Results and Discussion of Test Data
452(2)
17.4.1 Transmission Electron Microscopy
452(2)
17.5 Mechanical Properties Characterization
454(10)
17.5.1 Uniaxial Compression Tests
454(3)
17.5.2 Inelastic Kinking Analysis for Pure Compression Loading
457(4)
17.5.3 Calculation of Fiber Volume Fraction, Composite Shear Modulus, and φγ*y Ratio
461(1)
17.5.4 Discussion of Results
462(2)
17.6 Summary and Conclusions
464(1)
Problems
465(1)
Acknowledgments
465(1)
References
465(4)
PART 3 Modeling of Nanoscale and Nanostructured Materials
Chapter 18 Nanomechanics
469(32)
Young W. Kwon
18.1 Introduction
469(1)
18.2 Static Atomic Model
470(5)
18.3 Coupling Atomic and FEA Models
475(4)
18.4 Fatigue Analysis at Atomic Level
479(6)
18.5 Heterogeneous Carbon Nanotubes
485(13)
18.6 Summary
498(1)
Problems
498(1)
Acknowledgments
498(1)
References
498(3)
Chapter 19 Continuum and Atomistic Modeling of Thin Films Subjected to Nanoindentation
501(28)
J. David Schall, Donald W. Brenner, Ajit D. Kelkar, and Rahul Gupta
19.1 Introduction
501(10)
19.1.1 Finite Element Model
507(3)
19.1.2 Need for Atomistic Model
510(1)
19.2 Modeling of Nanoindentation
511(5)
19.2.1 Molecular Dynamics Simulation
511(1)
19.2.2 Embedded Atom Method (EAM)
512(1)
19.2.3 PARADYN
513(1)
19.2.4 Nordsieck–Gear Predictor–Corrector Algorithm
514(1)
19.2.5 Temperature Control
515(1)
19.3 Molecular Dynamics Simulation of Nanoindentation
516(8)
19.3.1 Simulation Set-Up
516(1)
19.3.2 Repulsive Potential Indentation
517(1)
19.3.3 Rigid Indentation
518(1)
19.3.4 Tests and Comparisons of Indenter Functions
519(5)
19.4 Conclusions
524(1)
Problems
525(1)
References
525(4)
Chapter 20 Synthesis, Optimization, and Characterization of AlN/TiN Thin Film Iieterostructures
529(56)
Cindy K. Waters, Sergey Yarmolenko, Jagannathan Sankar, Sudhir Neralla, and Ajit D. Kelkar
20.1 Introduction
530(8)
20.1.1 Nitrides
531(1)
20.1.2 Multilayer Coatings
531(3)
20.1.3 Aluminum Nitride
534(1)
20.1.3.1 A1N Properties
534(1)
20.1.3.2 A1N Applications
535(1)
20.1.4 Titanium Nitride
535(1)
20.1.4.1 TiN Properties
535(1)
20.1.4.2 TiN Applications
537(1)
20.1.5 AlN/TiN Heterostructures
537(1)
20.1.6 Motivation, Objective, and Organization
538(1)
20.2 Pulsed Laser Deposition
538(3)
20.2.1 Laser Energy Influences
539(1)
20.2.2 Ambient Gas Effects
539(2)
20.2.3 Substrate Temperature Effects
541(1)
20.3 Characterization of Thin Films
541(21)
20.3.1 Thin-Film Thickness
541(1)
20.3.2 Hardness Testing
542(1)
20.3.2.1 Testing Basics
542(1)
20.3.2.2 Microhardness Testing
543(1)
20.3.2.3 Nanohardness Testing
545(1)
20.3.2.4 Substrate Effect
551(1)
20.3.2.5 Indentation Pile-Up
552(1)
20.3.2.6 Continuous Stiffness Measurement Method
556(1)
20.3.3 Atomic Force Microscope (AFM)
557(2)
20.3.4 X-Ray Diffraction (XRD)
559(1)
20.3.5 Scanning Electron Microscope (SEM)
560(1)
20.3.6 Transmission Electron Microscope (TEM)
560(2)
20.4 Performance Evaluation of Thin Films
562(3)
20.4.1 Approach
562(1)
20.4.2 AlN Monolayer Film Deposition and Optimization
563(1)
20.4.3 TiN Monolayer Film Deposition
563(1)
20.4.4 AlN/TiN Heterostructure Deposition
563(1)
20.4.4.1 Hardness and Modulus versus Deposition Temperature
564(1)
20.4.4.2 Hardness versus Depth of Indentation
564(1)
20.4.4.3 Hardness versus Layer Characteristics
564(1)
20.4.4.4 Indentation Pile-Up Considerations and FEM
564(1)
20.4.5 X-Ray Diffraction
564(1)
20.4.6 Transmission Electron Microscopy (TEM)
565(1)
20.5 Optimization of Results
565(16)
20.5.1 Laser Energy Effect Results
565(1)
20.5.1.1 Ambient Gas Pressure Effects
565(1)
20.5.1.2 Location of Deposition on Heater
566(1)
20.5.2 AlN Monolayer Deposition and Properties
566(1)
20.5.3 TiN Monolayer Deposition and Properties
567(3)
20.5.4 AlN/TiN Multilayered Film Properties
570(1)
20.5.4.1 Hardness and Modulus versus Deposition Temperature
571(1)
20.5.4.2 Hardness versus Layer Characteristics
574(1)
20.5.4.3 Indentation Pile-Up Considerations and FEM
575(2)
20.5.5 X-Ray Diffraction (XRD) Data
577(3)
20.5.6 TEM Data
580(1)
20.6 Conclusions
581(1)
Problems
582(1)
References
582(3)
Chapter 21 Polarization in Nanotubes and Nanotubular Structures
585(26)
Marco Buongiorno Nardelli, Serge M. Nakhmanson, and Vincent Meunier
21.1 Introduction
585(3)
21.2 Modern Theory of Polarization
588(5)
21.2.1 Computing Polarization Using Berry Phase Method
589(1)
21.2.2 Polarization from Wannier Functions
590(1)
21.2.3 A Simple Way to Compute Berry Phases on a Computer
591(2)
21.3 Computational Details
593(1)
21.4 Polarization in Nanotubes
594(5)
21.4.1 Berry Phase Method
594(3)
21.4.2 Maximally Localized Wannier Functions
597(2)
21.5 Piezoelectricity in Nanotubes
599(2)
21.6 Polarization Effects in Nanotubular Structures
601(5)
21.6.1 Nanotube Superlattices and Heterostructures
601(4)
21.6.2 Multiwalled Hybrids
605(1)
21.6.3 Experimental Results
606(1)
21.7 Conclusions and Future Perspectives
606(1)
Problems
607(1)
Acknowledgments
608(1)
References
608(3)
Chapter 22 Multiscale Modeling of Stress Localization and Fracture in Nanocrystalline Metallic Materials
611(16)
Vesselin Yamakov, Dawn R. Phillips, Erik Saether, and Edward H. Glaessgen
22.1 Introduction
611(1)
22.2 Configuration Model
612(2)
22.3 Molecular Dynamics Model
614(2)
22.4 Shear Strength of a Grain Boundary
616(1)
22.5 FEM Simulation
617(1)
22.6 Results and Discussion
618(4)
22.7 Concluding Remarks
622(1)
Problems
623(1)
Acknowledgments
624(1)
References
624(3)
Chapter 23 Modeling of Carbon Nanotube/Polymer Composites
627(28)
Gregory M. Odegard
23.1 Introduction
627(2)
23.2 Carbon Nanotube/Polymer Interface
629(1)
23.3 Micromechanics
630(4)
23.3.1 Analytical Micromechanical Models
631(2)
23.3.2 Numerical Micromechanical Models
633(1)
23.4 Molecular Models
634(5)
23.4.1 Ab Initio Simulations
635(1)
23.4.2 Molecular Dynamics
635(4)
23.5 Example: SWNT/Polyimide Composite
639(4)
23.5.1 Modeling Procedure
639(2)
23.5.2 Results and Discussion
641(2)
23.6 Example: SWNT/Polyethylene Composite
643(6)
23.6.1 MD Simulations
643(2)
23.6.2 Stress—Strain Curves from Simulation
645(2)
23.6.3 Results
647(2)
23.7 Summary and Conclusions
649(1)
Problems
649(1)
References
650(5)
Chapter 24 Introduction to Nanoscale, Microscale, and Macroscale Heat Transport: Characterization and Bridging of Space and Time Scales
655(34)
Christianne V.D.R. Anderson and Kumar K. Tamma
24.1 Introduction
656(1)
24.2 Spatial and Temporal Regimes in Heat Conduction
657(1)
24.3 Considerations in Time–Heat Conduction
658(1)
24.4 Considerations in Size–Heat Conduction
658(2)
24.5 Boltzmann Transport Equation
660(8)
24.5.1 One-Temperature Models
661(2)
24.5.2 C- and F-Processes Model — A Unified Theory
663(3)
24.5.3 Validation of Thermodynamics Second Law for C- and F-Processes Model
666(1)
24.5.3.1 Fourier Model
667(1)
24.5.3.2 Cattaneo Model
667(1)
24.5.3.3 Jeffreys-Type Model
667(1)
24.6 Two-Temperature Models
668(2)
24.7 Relaxation Time
670(1)
24.8 Numerical Illustration — Two-Temperature Model and Pulse Laser Heating
671(2)
24.9 Numerical Illustration — One-Temperature Model and Heat Conduction Model Number FT
673(4)
24.9.1 Spanning Spatial Scales
675(2)
24.10 Multilayers and Superlattices
677(1)
24.11 Equation of Phonon Radiative Transfer (EPRT)
678(2)
24.12 Callaway—Holland's Model
680(2)
24.12.1 Comparison of Holland Model and EPRT Results
681(1)
24.13 Molecular Dynamics
682(2)
24.13.1 Pristine Nanotube
684(1)
24.14 Concluding Remarks
684(2)
Problems
686(1)
Acknowledgments
686(1)
References
686(3)
Index 689
0415951704
Preface vii
1 THE GEOGRAPHY OF GLOBALIZATION 1(16)
2 THEORIZING THE POLITICS OF SPACE 17(24)
3 SERVING TRANSNATIONAL CAPITAL 41(36)
4 CONSTRUCTING THE GLOCAL TRANSNATIONAL CAPITALIST CLASS 77(28)
5 SELLING EXPORTS 105(28)
6 IMAGINEERING WORLD CITIES 133(40)
7 CONCLUSION 173(10)
Appendix 183(6)
Bibliography 189(24)
Notes 213(6)
Index 219

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program