did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9789812565341

Natural Biodynamcis

by ;
  • ISBN13:

    9789812565341

  • ISBN10:

    9812565345

  • Format: Hardcover
  • Copyright: 2006-04-01
  • Publisher: World Scientific Pub Co Inc
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $341.00
  • Digital
    $576.00
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

This comprehensive volume is a graduate-level text in human biodynamics, written in the unified categorical language of modern differential geometry and topology. Combining mathematics, physics and robotics with human physiology, this is the first book that describes all levels of human biodynamics, from musculo-skeletal mechanics to the higher brain functions. The book develops and uses a variety of research methods, ranging from chaos theory and Haken's synergetics, through quantum mechanics, to nonlinear control and artificial intelligence, to provide the means to understand, predict and control the behavior of human-like systems in their full neuro-musculo-skeletal complexity. The applications of this unique scientific methodology range from prediction of human neuro-musculo-skeletal injuries to brain-like control of humanoid robots.

Table of Contents

Preface vii
Glossary of Frequently Used Symbols xv
1. Introduction 1(24)
1.1 The Problem of Natural Biodynamics
1(2)
1.2 A Brief History of Biodynamics
3(5)
1.3 Mechanical Basis of Biodynamics
8(7)
1.3.1 Natural Galllei Group
9(1)
1.3.2 Newtonian Equations of Motion
10(1)
1.3.3 Calculus of Variations
11(1)
1.3.4 Lagrangian Equations of Motion
12(1)
1.3.5 Hamiltonian Equations of Motion
13(1)
1.3.6 Lagrangian Flows on Biodynamic Manifolds
14(1)
1.4 Conservative versus Dissipative Hamiltonian Dynamics
15(8)
1.4.1 Dissipative Systems
16(2)
1.4.2 Thermodynamic Equilibrium
18(1)
1.4.3 Nonlinearity
19(1)
1.4.4 The Second Law of Thermodynamics
19(2)
1.4.5 Geometry of Phase Space
21(2)
1.5 Neural Basis of Biodynamics
23(2)
2. Natural Language of Biodynamics 25(86)
2.1 Categorical Metalanguage
25(35)
2.1.1 Preliminaries from Calculus, Algebra and Topology
25(14)
2.1.1.1 Notes From Calculus
26(2)
2.1.1.2 Notes from Set Theory
28(1)
2.1.1.3 Notes from General Topology
28(4)
2.1.1.4 Commutative Diagrams
32(3)
2.1.1.5 Groups and Related Algebraic Structures
35(4)
2.1.2 Categories
39(4)
2.1.3 Functors
43(2)
2.1.4 Natural Transformations
45(2)
2.1.5 Limits and Colithits
47(1)
2.1.6 The Adjunction
47(2)
2.1.7 n—Categories
49(8)
2.1.7.1 Generalization to 'Big' n—Categories
49(5)
2.1.7.2 Topological Structure of n—Categories
54(3)
2.1.8 Algebra in Abelian Categories
57(2)
2.1.9 Fundamental Biodynamic Adjunction
59(1)
2.2 The Basics of Dynamics
60(8)
2.2.1 Ordinary Differential Equations
60(3)
2.2.2 Linear Autonomous Dynamics
63(5)
2.2.2.1 The Flow of a Linear ODE
63(2)
2.2.2.2 Canonical Linear Flows in R²
65(2)
2.2.2.3 Topological Equivalence
67(1)
2.3 Chaos and Synergetics in Biodynamics
68(43)
2.3.1 Prototype of Chaotic and Synergetic Systems.
73(2)
2.3.2 Chaotic Systems and Biomorphs
75(7)
2.3.2.1 Simulation Examples: Chaotic Systems
75(6)
2.3.2.2 Simulation Examples: Biomorphic Systems
81(1)
2.3.3 Controlling Chaos within the Chaos Theory
82(19)
2.3.3.1 Exploiting Critical Sensitivity
82(3)
2.3.3.2 Lyapunov exponents and KY—dimension
85(2)
2.3.3.3 Kolmogorov—Sinai entropy
87(2)
2.3.3.4 Chaos Control by Ott, Grebogi and Yorke
89(3)
2.3.3.5 Floquet Stability Analysis and OGY Control
92(5)
2.3.3.6 Jerk Functions of Simple Chaotic Flows
97(4)
2.3.4 The Basic Hamiltonian Model of Biodynamics
101(1)
2.3.5 The Basics of Haken's Synergetics
102(7)
2.3.5.1 Phase Transitions
104(2)
2.3.5.2 Mezoscopic Derivation of Order Parameters
106(3)
2.3.6 Macro—Synergetic Control of Biodynamics
109(2)
3. Natural Geometry of Biodynamics 111(150)
3.1 Motivation for Geometry in Biodynamics
114(3)
3.2 Biodynamic Manifold M
117(4)
3.2.1 Definition of the Manifold M
118(2)
3.2.2 Smooth Maps Between Manifolds
120(1)
3.3 Biodynamic Bundles
121(3)
3.3.1 The Tangent Bundle of the Manifold M
121(2)
3.3.2 The Cotangent Bundle of the Manifold M
123(1)
3.4 Sections of Biodynamic Bundles
124(28)
3.4.1 Biodynamic Evolution and Flow
125(1)
3.4.2 Vector-Fields and Their Flows
126(7)
3.4.2.1 Vector-Fields on M
126(1)
3.4.2.2 Integral Curves as Biodynamic Trajectories
127(4)
3.4.2.3 Biodynamic Flows on M
131(1)
3.4.2.4 Categories of ODEs
132(1)
3.4.3 Differential Forms on M
133(15)
3.4.3.1 1—Forms on M
134(1)
3.4.3.2 k—Forms on M
135(2)
3.4.3.3 Exterior Differential Systems
137(1)
3.4.3.4 Exterior Derivative on M
138(2)
3.4.3.5 De Rham Complex and Homotopy Operators
140(2)
3.4.3.6 Stokes Theorem and De Rham Cohomology
142(1)
3.4.3.7 Euler-Poincare Characteristics of M
143(1)
3.4.3.8 Duality of Chains and Forms on M
144(2)
3.4.3.9 Other Exterior Operators on M
146(2)
3.4.4 Geometry of Nonlinear Dynamics
148(4)
3.5 Lie Categories in Biodynamics
152(43)
3.5.1 Lie Derivative in Biodynamics
152(10)
3.5.1.1 Lie Derivative on Functions
152(3)
3.5.1.2 Lie Derivative of Vector Fields
155(2)
3.5.1.3 Derivative of the Evolution Operator
157(1)
3.5.1.4 Lie Derivative of Differential Forms
158(1)
3.5.1.5 Lie Derivative of Various Tensor Fields
159(2)
3.5.1.6 Lie Algebras
161(1)
3.5.2 Lie Groups in Biodynamics
162(18)
3.5.2.1 Lie Groups and Their Lie Algebras
162(5)
3.5.2.2 Actions of Lie Groups on M
167(2)
3.5.2.3 Basic Biodynamic Groups
169(2)
3.5.2.4 Groups of Joint Rotations
171(4)
3.5.2.5 Special Euclidean Groups of Joint Motions
175(5)
3.5.3 Group Structure of the Biodynamic Manifold M
180(5)
3.5.3.1 Purely Rotational Biodynamic Manifold
180(2)
3.5.3.2 Reduction of the Rotational Manifold
182(2)
3.5.3.3 The Complete Biodynamic Manifold
184(1)
3.5.3.4 Realistic Human Spine Manifold
184(1)
3.5.4 Lie Symmetries in Biodynamics
185(10)
3.5.4.1 Lie Symmetry Groups
185(3)
3.5.4.2 Prolongations
188(6)
3.5.4.3 Special Biodynamic Equations
194(1)
3.6 Riemannian Geometry in Biodynamics
195(22)
3.6.1 Local Riemannian Geometry on M
196(9)
3.6.1.1 Riemannian Metric on M
197(4)
3.6.1.2 Geodesics on M
201(1)
3.6.1.3 Riemannian Curvature on M
202(3)
3.6.2 Global Riemannian Geometry on M
205(12)
3.6.2.1 The Second Variation Formula
205(3)
3.6.2.2 Gauss—Bonnet Formula
208(1)
3.6.2.3 Ricci Flow on M
209(3)
3.6.2.4 Structure Equations on M
212(1)
3.6.2.5 Basics of Morse Theory
213(2)
3.6.2.6 Basics of (Co)Bordism Theory
215(2)
3.7 Symplectic Geometry in Biodynamics
217(3)
3.7.1 Symplectic Algebra
217(1)
3.7.2 Symplectic Geometry on M
218(2)
3.8 Impulse Biodynamics and Synthetic Geometry
220(17)
3.8.1 Delta Spikes
220(2)
3.8.2 Kick Dynamics
222(4)
3.8.2.1 Deterministic Delayed Kicks
222(1)
3.8.2.2 Random Kicks and Langevin Equation
223(3)
3.8.3 Distributions and Synthetic Differential Geometry
226(11)
3.8.3.1 Distributions
227(2)
3.8.3.2 Synthetic Calculus in Euclidean Spaces
229(2)
3.8.3.3 Spheres and Balls as Distributions
231(2)
3.8.3.4 Stokes Theorem for Unit Sphere
233(1)
3.8.3.5 Time Derivatives of Expanding Spheres
234(1)
3.8.3.6 The Wave Equation
235(2)
3.9 A Quick Look at Modern Geometrodynamics
237(5)
3.9.1 Einstein Equations
237(1)
3.9.2 n—Categories in Physics
237(3)
3.9.3 Quantum Geometry Framework
240(2)
3.10 3D Modelling and Animation in Biodynamics
242(15)
3.10.1 Essentials of Human Animation
242(3)
3.10.1.1 Motion Capture-Based Human Animation
243(1)
3.10.1.2 Virtual Muscular Dynamics in 3D-Graphics
244(1)
3.10.2 Curves and Surfaces in Geometric Modelling
245(4)
3.10.2.1 Power Basis Form of a Curve
246(1)
3.10.2.2 Bezier Curves
247(2)
3.10.2.3 Rational Bezier Curves
249(1)
3.10.3 B-Spline Basis Functions
249(2)
3.10.3.1 DeBoor-Cox Recursive Definition
250(1)
3.10.3.2 Derivatives of B-Spline Basis Functions
250(1)
3.10.4 B-Spline Curves and Surfaces in Geometric Modelling
251(4)
3.10.4.1 Definition of B-Spline Curves
251(1)
3.10.4.2 Properties of B-Spline Curves
251(1)
3.10.4.3 Derivatives of a B-Spline Curve
252(1)
3.10.4.4 Definition of B-Spline Surfaces
253(1)
3.10.4.5 Properties of B-Spline Surfaces
253(1)
3.10.4.6 Derivatives of a B-Spline Surface
254(1)
3.10.5 NURBS Curves and Surfaces
255(2)
3.10.5.1 Definition of NURBS Curves
255(1)
3.10.5.2 Properties of NURBS Curves
255(1)
3.10.5.3 Definition of NURBS Surfaces
256(1)
3.10.5.4 Properties of NURBS Surfaces
257(1)
3.11 Kinematics of Biomechanical Chains
257(4)
3.11.1 3D Transformation Matrix
257(1)
3.11.2 A Multilink Kinematic Chain
258(1)
3.11.3 CNS Representation of the Body Posture
259(1)
3.11.4 Transformation Matrix Used in Computer Graphics
260(1)
4. Natural Mechanics of Biodynamics 261(166)
4.1 Lagrangian Formalism in Biodynamics
261(4)
4.2 Hamiltonian Formalism in Biodynamics
265(45)
4.2.1 Nonlinear Dynamics in Hamiltonian Form
267(22)
4.2.1.1 Real 1-DOF Hamiltonian Dynamics
267(9)
4.2.1.2 Complex One-DOF Hamiltonian Dynamics
276(3)
4.2.1.3 Library of Basic Hamiltonian Systems
279(7)
4.2.1.4 n-DOF Hamiltonian Dynamics
286(3)
4.2.2 Hamiltonian Geometry in Biodynamics
289(3)
4.2.3 Hamilton-Poisson Geometry in Biodynamics
292(6)
4.2.3.1 Hamilton-Poisson Biodynamic Systems
294(4)
4.2.4 Completely Integrable Hamiltonian Systems
298(3)
4.2.4.1 Liouville Theorem
298(1)
4.2.4.2 Action-Angle Variables
299(2)
4.2.5 Ergodicity
301(9)
4.2.5.1 Ergodicity in Hamiltonian Systems
301(1)
4.2.5.2 Dynamical Systems and Hyperbolicity
302(3)
4.2.5.3 Ergodic Theory and Nontrivial Recurrence
305(1)
4.2.5.4 Nonuniformly Hyperbolic Trajectories
306(1)
4.2.5.5 Systems with Nonzero Lyapunov Exponents
307(3)
4.3 Quantum Formalism in Nano-Biodynamics
310(41)
4.3.1 Quantum Mechanics in Biological Matter
310(1)
4.3.2 Dirac's Canonical Quantization
311(19)
4.3.2.1 Quantum States and Operators
312(6)
4.3.2.2 Quantum Pictures
318(2)
4.3.2.3 Spectrum of a Quantum Operator
320(4)
4.3.2.4 General Representation Model
324(1)
4.3.2.5 Direct Product Space
325(1)
4.3.2.6 State-Space for n Quantum Particles
326(2)
4.3.2.7 Quantum Measurement and Penrose Paradox
328(2)
4.3.3 The Problem of Quantum Measurement and Entropy
330(12)
4.3.3.1 The Classical Apparatus
331(1)
4.3.3.2 Quantum Object
331(2)
4.3.3.3 Adiabatic Measurement Lagrangians
333(1)
4.3.3.4 The Stern-Gerlach Experiment
334(1)
4.3.3.5 Work and Heat
335(1)
4.3.3.6 Statistical Thermodynamics
336(2)
4.3.3.7 Friction in a Macroscopic Apparatus
338(2)
4.3.3.8 Low Velocity Projective Measurements
340(1)
4.3.3.9 Information and Entropy
341(1)
4.3.4 Von Neumann's Density Matrix Quantization
342(3)
4.3.4.1 Dissipative Quantum Formalism
344(1)
4.3.5 Geometric Quantization
345(6)
4.3.5.1 Motivation
345(2)
4.3.5.2 Geometric Prequantization
347(4)
4.4 Variational Formalism in Biodynamics
351(13)
4.4.1 Biodynamic Action Functional
351(1)
4.4.2 Lagrangian Action
352(1)
4.4.3 Hamiltonian Action
353(1)
4.4.4 Noether Theorem
354(2)
4.4.5 Hamiltonian-Action Formulation of Biodynamics
356(3)
4.4.6 Feynman Quantum Action
359(5)
4.5 Nonholonomic Biodynamics
364(6)
4.5.1 Lagrangian Approach
364(2)
4.5.2 Hamiltonian Approach
366(2)
4.5.3 Biodynamic Example: Bicycle Dynamics
368(2)
4.6 Stochastic Formalism in Biodynamics
370(6)
4.6.1 Markov Stochastic Processes
372(2)
4.6.2 Statistical Mechanics of Oscillator Chains
374(2)
4.7 Muscular Excitation-Contraction Dynamics
376(27)
4.7.1 Human Musculo-Skeletal System
376(9)
4.7.1.1 Human Skeleton
376(2)
4.7.1.2 Human Joints
378(1)
4.7.1.3 Human Muscular System
379(2)
4.7.1.4 Human Energy Flow
381(4)
4.7.1.5 Equivalent Muscular Actuator
385(1)
4.7.2 Molecular Muscular Dynamics
385(1)
4.7.3 Mezoscopic Muscular Dynamics
386(6)
4.7.3.1 Myocybernetics
392(1)
4.7.4 Macroscopic Muscular Dynamics
392(11)
4.7.4.1 Soft Tissue Dynamics of Relaxed Muscles
392(3)
4.7.4.2 Classical Hill's Model
395(1)
4.7.4.3 Biodynamics of Load-Lifting
396(7)
4.8 Lie Functors in Biodynamics
403(16)
4.8.1 Lie-Lagrangian Biodynamic Functor
403(7)
4.8.1.1 Joint Kinematics
403(2)
4.8.1.2 Exterior Lagrangian Dynamics
405(5)
4.8.2 Lie-Hamiltonian Biodynamic Functor
410(4)
4.8.2.1 The Abstract Functor Machine
412(1)
4.8.2.2 Muscle-Driven Hamiltonian Biodynamics
413(1)
4.8.3 Stochastic-Lie-Hamiltonian Biodynamic Functor
414(2)
4.8.4 Fuzzy-Stochastic-Lie-Hamiltonian Functor
416(3)
4.9 Mechanics of Spinal Injuries
419(8)
4.9.1 Spinal Dislocations, Disclinations and Fractures
420(1)
4.9.2 Measuring the Risk of Local Intervertebral Injuries
420(6)
4.9.2.1 Biodynamic Jerk Functions
424(2)
4.9.3 Measuring the Risk of Vertebral Fractures
426(1)
4.9.3.1 Research on Bone Injuries
426(1)
5. Natural Topology of Biodynamics 427(26)
5.1 Category of (Co)Chain Complexes in Biodynamics
427(4)
5.1.1 (Co)Homologies in Abelian Categories Related to M
428(2)
5.1.2 Reduction and Euler-Poincare Characteristic
430(1)
5.2 Natural Duality in Biodynamics
431(10)
5.2.1 Geometric Duality Theorem for M
431(6)
5.2.1.1 Lie-Functorial Proof
432(1)
5.2.1.2 Geometric Proof
433(4)
5.2.2 Topological Duality Theorem for M
437(2)
5.2.2.1 Cohomological Proof
437(2)
5.2.2.2 Homological Proof
439(1)
5.2.3 Lagrangian Versus Hamiltonian Duality
439(1)
5.2.4 Globally Dual Structure of Rotational Biodynamics
440(1)
5.3 Topological Phase Transitions and Hamiltonian Chaos
441(11)
5.3.1 Phase Transitions in Hamiltonian Systems
441(3)
5.3.2 Geometry of the Largest Lyapunov Exponent
444(3)
5.3.3 Euler Characteristics of Hamiltonian Systems
447(5)
5.4 The Covariant Force Functor
452(1)
6. Natural Control and Self-Organization in Biodynamics 453(88)
6.1 The Basics of Classical Control and Stability
455(17)
6.1.1 Introduction to Feedback Control
455(5)
6.1.2 Linear Stationary Systems and Operators
460(5)
6.1.2.1 Basics of Kalman State-Space Theory
460(1)
6.1.2.2 Regulator Problem
461(1)
6.1.2.3 End Point Control Problem
462(1)
6.1.2.4 Servomechanism Problem
463(1)
6.1.2.5 Repetitive Mode Problem
463(1)
6.1.2.6 Feedback Changes the Operator
464(1)
6.1.3 Stability and Boundedness
465(3)
6.1.4 Lyapunov's Stability Method
468(1)
6.1.5 Graphical Techniques for Nonlinear Systems
469(3)
6.1.5.1 Describing Function Analysis
470(2)
6.2 The Basis of Modern Geometric Control
472(15)
6.2.1 Feedback Linearization
472(9)
6.2.1.1 Exact Feedback Linearization
472(4)
6.2.1.2 Relative Degree
476(2)
6.2.1.3 Approximative Feedback Linearization
478(3)
6.2.2 Controllability
481(6)
6.2.2.1 Linear Controllability
481(1)
6.2.2.2 Nonlinear Controllability
482(2)
6.2.2.3 Controllability Condition
484(1)
6.2.2.4 Distributions
485(1)
6.2.2.5 Foliations
486(1)
6.3 Modern Control Techniques for Mechanical Systems
487(9)
6.3.1 Abstract Control System
487(1)
6.3.2 Controllability of a Linear Control System
488(1)
6.3.3 Affine Control System and Local Controllability
489(1)
6.3.4 Hamiltonian Control and Maximum Principle
490(6)
6.3.4.1 Hamiltonian Control Systems
490(3)
6.3.4.2 Pontryagin's Maximum Principle
493(1)
6.3.4.3 Affine Control Systems
494(2)
6.4 Locomotion Systems and Human Gait
496(12)
6.4.1 Control of Locomotion Systems
496(8)
6.4.1.1 Stratified Kinematic Controllability
497(2)
6.4.1.2 The Distributions Approach
499(1)
6.4.1.3 The Exterior Differential Systems Approach
499(2)
6.4.1.4 On the Existence and Uniqueness of Solutions
501(1)
6.4.1.5 Trajectory Generation Problem
502(2)
6.4.2 Gait Biodynamics
504(4)
6.5 Biodynamic Control Policy, Learning and Self-Organization
508(18)
6.5.1 Control Policy Learning by Robots
508(4)
6.5.1.1 Direct Learning of the Control Policy
509(1)
6.5.1.2 Indirect Learning of the Control Policy
510(2)
6.5.1.3 Learning of Motor Control Components
512(1)
6.5.2 Pathways to Self-Organization in Biodynamics
512(2)
6.5.3 Neuro-Muscular Excitation-Contraction Dynamics
514(10)
6.5.3.1 Motor Units
514(1)
6.5.3.2 Darwinian Oscillatory Neural Net
514(3)
6.5.3.3 Recurrent Neuro-Muscular Model
517(2)
6.5.3.4 Autogenetic Reflex Motor-Servo
519(1)
6.5.3.5 Biodynamics Control
520(4)
6.5.4 Lie-Adaptive Biodynamic Control
524(2)
6.6 Essentials of Biodynamic Measurement: Kalman Filtering and Inertial Navigation
526(11)
6.6.1 Kalman Filter Basics
526(6)
6.6.2 Inertial Navigation
532(4)
6.6.3 Adaptive Estimation in Biomechanics
536(1)
6.7 Humanoid Robotics
537(4)
6.7.1 Honda Humanoid Series
537(1)
6.7.2 Cerebellar Robotics
538(3)
7. Natural Brain Dynamics and Sensory—Motor Integration 541(296)
7.1 Introduction to Brain
542(7)
7.2 Human Nervous System
549(89)
7.2.1 Building Blocks of the Nervous System
550(16)
7.2.1.1 Neuronal Circuits
552(4)
7.2.1.2 Basic Brain Partitions and Their Functions
556(2)
7.2.1.3 Nerves
558(1)
7.2.1.4 Action potential
559(2)
7.2.1.5 Synapses
561(5)
7.2.2 Reflex Action: the Basis of CNS Activity
566(2)
7.2.3 The Spinal Cord Pathways
568(10)
7.2.3.1 Spinal Lower Motor Neurons
569(7)
7.2.3.2 Central Pattern Generators in the Spinal Cord
d575
7.2.3.3 Influence of Higher Centers
576(2)
7.2.4 First Look at the Brain
578(3)
7.2.5 Motor Pathways
581(6)
7.2.5.1 Primary Motor Cortex
581(3)
7.2.5.2 Motor Association/Premotor Cortical Areas
584(3)
7.2.6 Subcortical Motor 'Side Loops'
587(13)
7.2.6.1 The Cerebellum
588(6)
7.2.6.2 The Basal Ganglia
594(2)
7.2.6.3 Cerebellar Movement Control
596(4)
7.2.7 Human Senses and their Pathways
600(3)
7.2.8 The Human—Like Vision
603(12)
7.2.8.1 Extraocular SO(3)—Muscles
604(2)
7.2.8.2 Retina
606(1)
7.2.8.3 Cornea
607(1)
7.2.8.4 Iris
608(2)
7.2.8.5 Pursuit Eye Control and Motion Perception
610(3)
7.2.8.6 Optical Flow
613(2)
7.2.9 The Visual. Pathway
615(5)
7.2.9.1 Light Reflex and 3D Vision
619(1)
7.2.10 Differential Geometry of the Striate Cortex
620(2)
7.2.11 Auditory and Vestibular Pathways
622(10)
7.2.11.1 The Inner Ear
622(1)
7.2.11.2 Auditory Transduction
623(1)
7.2.11.3 Central Auditory Pathways
624(2)
7.2.11.4 The Vestibular System
626(1)
7.2.11.5 The Semicircular Canals
626(1)
7.2.11.6 The Vestibulo-Ocular Reflex
627(1)
7.2.11.7 The Utricle and Saccule
628(1)
7.2.11.8 Mechanics of the Semicircular Canals
629(1)
7.2.11.9 Endolymph Flow in the Semicircular Canals
630(2)
7.2.12 Somatosensory Pathways
632(6)
7.2.12.1 The Discriminative Touch System
633(1)
7.2.12.2 The Pain and Temperature System
634(1)
7.2.12.3 The Proprioceptive System
635(3)
7.3 The Sensory-Motor Adjunction
638(23)
7.3.1 Summary on Sensory-Motor Pathways
638(4)
7.3.2 Sensory-Motor Control
642(7)
7.3.2.1 Multisensory Integration for Motor Planning
645(4)
7.3.2.2 The Sensory-Motor Adjunction
649(1)
7.3.3 The Central Biomechanical Adjunction
649(9)
7.3.3.1 Postural Control Experiments
652(3)
7.3.3.2 Learning Arm Movement Control
655(3)
7.3.4 Mechanism of Brain Injuries
658(3)
7.3.4.1 Basic Dynamics of Brain Injuries
658(3)
7.3.4.2 Research on Head and Brain Injuries
661(1)
7.4 Brain Dynamics
661(11)
7.4.1 Microscopic Neurodynamics of Microtubules
662(5)
7.4.1.1 Biochemistry of Microtubules
662(2)
7.4.1.2 Kink Soliton Model of MT-Dynamics
664(3)
7.4.2 Mezoscopic Neurodynamics of Action Potentials
667(5)
7.4.2.1 Hodgkin-Huxley Model
667(4)
7.4.2.2 FitzHugh-Nagumo Model
671(1)
7.5 Biological Neural Nets
672(33)
7.5.1 Phase Dynamics of Oscillatory Neural Nets
672(6)
7.5.1.1 Kuramoto Synchronization Model
675(1)
7.5.1.2 Lyapunov Chaotic Synchronization
676(2)
7.5.2 Complex Networks Dynamics
678(3)
7.5.2.1 Continuum Limit of the Kuramoto Network
679(1)
7.5.2.2 Path-Integral Approach to Complex Nets
679(2)
7.5.3 Complex Adaptive Systems
681(3)
7.5.4 Noise Delayed Bifurcation in Coupled Neurons
684(4)
7.5.4.1 The Theta-Neuron
684(1)
7.5.4.2 Coupled Theta-Neurons
685(3)
7.5.5 Classification of 'Spiking' Neuron Models
688(4)
7.5.6 Weakly Connected and Canonical Neural Nets
692(2)
7.5.7 Quantum Brain Model
694(4)
7.5.8 Open Liouville Neurodynamics and Self-Similarity
698(7)
7.5.8.1 Hamiltonian Framework
700(1)
7.5.8.2 Conservative Classical System
700(1)
7.5.8.3 Conservative Quantum System
700(1)
7.5.8.4 Open Classical System
701(1)
7.5.8.5 Continuous Neural Network Dynamics
702(1)
7.5.8.6 Open Quantum System
703(1)
7.5.8.7 Non-Critical Stringy MT-Dynamics
704(1)
7.5.8.8 Equivalence of Neurodynamic Forms
704(1)
7.6 Artificial Neural Nets in Biodynamics
705(36)
7.6.1 Biological Versus Artificial Neural Nets
705(2)
7.6.2 Common Discrete ANNs
707(25)
7.6.2.1 Multilayer Perceptrons
707(12)
7.6.2.2 Summary of Supervised Learning Methods
719(1)
7.6.2.3 Other Standard ANNs
720(7)
7.6.2.4 Fully Recurrent ANNs
727(1)
7.6.2.5 Dynamical Games and Recurrent ANNs
728(3)
7.6.2.6 Complex-Valued ANNs
731(1)
7.6.3 Common Continuous ANNs
732(9)
7.6.3.1 Neurons as Functions
733(2)
7.6.3.2 Basic Activation and Learning Dynamics
735(1)
7.6.3.3 Standard Models of Continuous Nets
736(5)
7.7 Distinguished ANN Models
741(14)
7.7.1 Generalized Kohonen's SOM
741(4)
7.7.1.1 The Winner Relaxing Kohonen Algorithm
742(1)
7.7.1.2 The Magnification Factor
743(1)
7.7.1.3 Magnification Exponent
744(1)
7.7.2 Dynamics of Hopfield's Associative Recurrent Nets
745(8)
7.7.2.1 Ising-Spin Neurons
745(1)
7.7.2.2 Graded-Response Neurons
746(1)
7.7.2.3 Hopfield's Overlaps
747(2)
7.7.2.4 Overlap Dynamics
749(1)
7.7.2.5 Hebbian Learning Dynamics
750(3)
7.7.3 A Self—Organizing Bidirectional Competitive Net
753(2)
7.8 Fuzzy Logic in Biodynamics
755(28)
7.8.1 The Concept of Fuzziness
755(6)
7.8.1.1 'Fuzzy Thinking'
755(1)
7.8.1.2 Fuzzy Sets
756(1)
7.8.1.3 Fuzziness of the Real World
757(1)
7.8.1.4 Fuzzy Entropy
758(3)
7.8.2 Fuzzy Inference Engine
761(3)
7.8.3 Fuzzy Logic Control
764(7)
7.8.3.1 Fuzzy Control of Biodynamic Jerks
768(1)
7.8.3.2 Characteristics of Fuzzy Control
769(1)
7.8.3.3 Evolving Connectionist Systems
770(1)
7.8.4 High—Resolution FAM Agents
771(12)
7.8.4.1 Generic Nonlinear MIMO Systems
772(3)
7.8.4.2 Alternative MIMO Systems
775(2)
7.8.4.3 Biodynamics Example: Tennis Game
777(6)
7.9 Natural System in a Category
783(9)
7.9.1 Categorical Patterns and Hierarchical Links
783(3)
7.9.2 A General Natural System
786(1)
7.9.3 The Category of Neurons
787(1)
7.9.4 Memory Evolutive System
787(2)
7.9.5 Neural System in a Category
789(3)
7.10 Brain—Mind Functorial Machines
792(8)
7.10.1 Neurodynamic 2—Functor
792(3)
7.10.2 Solitary 'Thought Nets' and the Emerging Mind
795(5)
7.10.2.1 Synergetic 'Thought Solitons'
795(5)
7.11 Body—Mind Adjunction and Natural Psychodynamics
800(18)
7.11.1 Natural Psychodynamics in the Life Space Foam
801(17)
7.11.1.1 Six Faces of the Life Space Foam
806(1)
7.11.1.2 General Formalism
806(4)
7.11.1.3 Motion and Decision Making in LSFpaths
810(4)
7.11.1.4 Force—Fields and Memory in LSFfields
814(2)
7.11.1.5 Geometries, Topologies and Noise in LSFgeom
816(2)
7.12 Brain—Like Control in a Nutshell
818(19)
7.12.1 Functor Control Machine
820(2)
7.12.2 Spinal Control Level
822(5)
7.12.3 Cerebellar Control Level
827(3)
7.12.4 Cortical Control Level
830(3)
7.12.5 A Note on Muscular Training
833(3)
7.12.6 Errors in Motion Control: Locomotor Injuries
836(1)
Appendix A 837(110)
A.1 Basic Formulas from Tensor Analysis
837(20)
A.1.1 General Functional Transformation
837(7)
A.1.1.1 Transformation of Coordinates
838(1)
A.1.1.2 Scalar Invariants
839(1)
A.1.1.3 Vectors and Covectors
839(1)
A.1.1.4 Second—Order Tensors
840(2)
A.1.1.5 Higher—Order Tensors
842(1)
A.1.1.6 Tensor Symmetry
842(2)
A.1.2 Euclidean Tensors
844(2)
A.1.2.1 Basis Vectors and the Metric Tensor in Rn
844(1)
A.1.2.2 Tensor Products in Rn
845(1)
A.1.3 Tensor Derivatives on Riemannian Manifolds
846(7)
A.1.3.1 Christoffel's Symbols
846(1)
A.1.3.2 Geodesics
847(1)
A.1.3.3 The Covariant Derivative
847(1)
A.1.3.4 Vector Differential Operators
848(1)
A.1.3.5 The Absolute Derivative
849(4)
A.1.4 The Covariant Force Law in Biodynamics
853(2)
A.1.5 The Essence of Natural Hamiltonian Biodynamics
855(1)
A.1.6 Neuro—Hamiltonian Control in Biodynamics
856(1)
A.2 Frequently Used Neurophysiological Terms
857(23)
A.3 Modern 3D Neuroimaging
880(9)
A.3.1 Nuclear Magnetic Resonance in 2D Medical Imaging
880(1)
A.3.2 3D Magnetic Resonance Imaging of Human Brain
881(1)
A.3.3 Diffusion MRI in 3D Volume
882(1)
A.3.4 Imaging Diffusion with MRI
883(1)
A.3.5 3D Diffusion Tensor
884(3)
A.3.6 Brain Connectivity Studies
887(1)
A.3.7 Brain Waves and Independent Component Analysis
888(1)
A.4 Complex Functions, Manifolds and Hilbert Spaces
889(15)
A.4.1 Complex Numbers and Vectors
889(5)
A.4.1.1 Quaternions and Rotations
890(4)
A.4.2 Complex Functions
894(4)
A.4.3 Complex Manifolds
898(4)
A.4.4 Hilbert Space
902(2)
A.5 Classical Lie Theory
904(11)
A.5.1 Basic Tables of Lie Groups and Their Lie Algebras
904(3)
A.5.2 Representations of Lie groups
907(1)
A.5.3 Root Systems and Dynkin Diagrams
908(5)
A.5.3.1 Definitions
908(1)
A.5.3.2 Classification
909(1)
A.5.3.3 Dynkin Diagrams
910(3)
A.5.3.4 Root Systems and Lie Theory
913(1)
A.5.4 Simple and Semisimple Lie Groups and Algebras
913(2)
A.6 Phase Transitions, Partition Function and Noise
915(23)
A.6.1 Equilibrium Phase Transitions
915(6)
A.6.1.1 Classification of Phase Transitions
916(2)
A.6.1.2 Basic Properties of Phase Transitions
918(3)
A.6.2 Landau's Theory of Phase Transitions
921(1)
A.6.3 Partition Function
922(8)
A.6.3.1 Classical Partition Function
923(1)
A.6.3.2 Quantum Partition Function
924(1)
A.6.3.3 Vibrations of Coupled Oscillators
925(5)
A.6.4 Noise-Induced Nonequilibrium Phase Transitions
930(8)
A.6.4.1 General Zero-Dimensional System
931(3)
A.6.4.2 General d—Dimensional System
934(4)
A.7 MathematicaTm Derivation of Main Biodynamic Functions
938(9)
A.7.1 Load-Lifting Biodynamics
938(1)
A.7.2 Brain-Like Control Functions
939(5)
A.7.2.1 Spinal FC-level
939(2)
A.7.2.2 Cerebellar FC-level
941(1)
A.7.2.3 Cortical FC-level
942(2)
A.7.3 Anatomical Description of Human Movements
944(3)
A.7.3.1 Movements in Synovial Joints
944(1)
A.7.3.2 Examples of Sport Movements
945(2)
Bibliography 947(32)
Index 979

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program