rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9783540297833

Neurotransmitter Transporters

by ;
  • ISBN13:

    9783540297833

  • ISBN10:

    3540297839

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2006-06-15
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $549.99 Save up to $435.15
  • Digital
    $248.82*
    Add to Cart

    DURATION
    PRICE
    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.

Summary

The present volume of the Handbook of Experimental Pharmacology gives a representative survey of the current status of the structure, function, regulation and molecular pharmacology of Neurotransmitter Transporters and aims at providing an overview of insights that were generated in the past 5 years. If the volume serves as both, a useful compendium of current concepts and an inspiring starting point, it will have fulfilled its mission and will be a source for students interested in this emerging field as well as for experienced scientists looking for an update. This volume is the brainchild of the editor-in-chief of the HEP series, Klaus Starke, awe-inspiring to all pharmacologists of younger generations.

Table of Contents

Zn²+ Modulation of Neurotransmitter Transporters 1(22)
K. Nørgaard-Nielsen, U. Gether
1 Introduction
2(3)
2 Synaptic Zn²+ Is a Potential Modulator of Several Neurotransmitter Systems
5(2)
3 Endogenous Zn²+-Binding Sites in Na+/Cl-Dependent Neurotransmitter Transporters
7(2)
4 Endogenous Zn²+-Binding Sites in the Excitatory Amino Acid Transporters
9(2)
5 Zn²+ Modulation of DAT Function
11(2)
6 Reversal of Zn²+ Sensitivity by Intracellular Mutations in the DAT
13(3)
7 Zn²+ Is Found in Presynaptic Vesicles and is Released Upon Neuronal Stimulation
16(2)
References
18(5)
Molecular Microfluorometry: Converting Arbitrary Fluorescence Units into Absolute Molecular Concentrations to Study Binding Kinetics and Stoichiometry in Transporters 23(36)
J.W. Schwartz, D. Piston, L.J. DeFelice
1 Introduction
24(27)
1.1 Neurotransmitter Transporters Conduct Transmitters Across Membranes
24(3)
1.2 Methods to Study Transporter Function
27(50)
1.2.1 Radiometric Assay
27(2)
1.2.2 Electrophysiology
29(2)
1.2.3 Amperometry and Cyclic Voltammetry
31(1)
1.2.4 Quantitative Fluorescence Microscopy
32(1)
1.2.5 Confocal Microscopy and Two-Photon Excitation
33(7)
1.2.6 TIRF Microscopy
40(2)
1.2.7 Fluorescence Lifetime Imaging Microscopy
42(3)
1.2.8 Fluorescence Correlation Spectroscopy
45(3)
1.2.9 Fluorescence Recovery After Photobleaching
48(2)
1.2.10 Fluorescence Plate Reader
50(1)
2 Summary
51(1)
References
52(7)
Structure/Function Relationships in Serotonin Transporter: New Insights from the Structure of a Bacterial Transporter 59(16)
G. Rudnick
1 General Background and Significance of SERT
59(2)
2 Mechanism of Transport
61(2)
3 Topology
63(2)
4 The Permeation Pathway
65(1)
5 The Substrate Binding Site
66(1)
6 Conformational Changes
67(3)
7 Future Directions
70(1)
References
71(4)
The Importance of Company: Na+ and Cl- Influence Substrate Interaction with SLC6 Transporters and Other Proteins 75(20)
M.E.A. Reith, J. Zhen, N. Chen
1 Introduction
76(1)
2 Cotransport of Na+ and Cl- with Substrate in SLC6 Family
76(1)
3 Residues Controlling Na+ Modulation
77(9)
3.1 SLC6 Family
77(4)
3.2 SLC1A2 in SLC1 Family
81(2)
3.3 PutP and SGLT1 in SGLT Family
83(1)
3.4 Other Transporters or Pumps
84(2)
4 Cl- Binding to Proteins and Cl- Modulation of Transport Proteins
86(2)
5 Comments on Transporter Residues Governing Na+ and Cl- Modulation of Transport
88(1)
References
89(6)
Currents in Neurotransmitter Transporters 95(18)
K. Gerstbrein, H.H. Sitte
1 Introduction
95(3)
2 Electrophysiological Background in a Nutshell
98(1)
3 Coupled and Uncoupled Currents
99(1)
4 The Single-File Model
100(1)
5 Transient Currents
101(1)
6 Leak Current
102(1)
7 Is There a Physiological Role for Transporter-Associated Currents?
103(2)
8 Currents and Amphetamines
105(3)
References
108(5)
Mutational Analysis of Glutamate Transporters 113(24)
R.J. Vandenberg
1 Glutamate Transporters
114(1)
2 Ion/Flux Coupling Determines the Concentrating Capacity of the Transporters
114(2)
3 Uncoupled Ion Currents Associated with Glutamate Transporters
116(1)
4 The Structure of a Bacterial Glutamate Transporter
117(1)
5 Mutational Studies of Mammalian Glutamate Transporters
118(12)
5.1 General Considerations and Approaches
118(1)
5.2 Structural Studies Using Site-Directed Mutagenesis
119(3)
5.2.1 Cysteine-Scanning Mutagenesis
119(2)
5.2.2 Cross-Linking of Cysteine Mutants
121(1)
5.3 Substrate Recognition and Translocation
122(5)
5.3.1 The Use of Chimeras to Define Functional Domains
122(1)
5.3.2 Glutamate and Ion Binding Sites
123(3)
5.3.3 Glutamate Binding Site in the Crystal Structure of Gltph
126(1)
5.4 Zn²+ Binding Sites on EAAT1 and EAAT4
127(1)
5.5 The Chloride Channel Within the Transporter
127(11)
5.5.1 Different Conformational States Regulate the Two Functions
128(1)
5.5.2 Residues that Line the Chloride Channel
129(1)
5.5.3 Opening the Chloride Channel Gate
130(1)
6 A Structural Model for the Transport and Chloride Channel Functions of Glutamate Transporters
130(2)
References
132(5)
The Diverse Roles of Vesicular Glutamate Transporter 3 137(14)
R.P. Seal, R.H. Edwards
1 Introduction
137(1)
2 Vesicular Glutamate Transport
138(4)
2.1 Identification of the Vesicular Glutamate Transporters
139(1)
2.2 Catecholamine Neurons Express VGLUT2
140(1)
2.3 Glutamate Release by Dopamine Neurons In Vivo
141(1)
3 Identification of VGLUT3 in Neurons and Glia
142(4)
3.1 VGLUT3 in Monoamine Neurons
143(1)
3.2 Cholinergic Interneurons of the Striatum
144(1)
3.3 Inhibitory Interneurons of the Hippocampus, Cortex, and Retina
144(1)
3.4 Dendritic Release of Glutamate
145(1)
3.5 Expression of VGLUT3 Transiently During Development
146(1)
4 Conclusion
146(1)
References
147(4)
Extraneuronal Monoamine Transporter and Organic Cation Transporters 1 and 2: A Review of Transport Efficiency 151(30)
E. Schömig, A. Lazar, D. Gründemann
1 Introduction
152(3)
1.1 Structure and Function
152(1)
1.2 Localization
153(1)
1.3 Genes, Polymorphisms and Knock-Out Mice
153(2)
2 Substrate Specificity
155(17)
2.1 Analysis of Transport Efficiency
155(2)
2.2 OCT1
157(5)
2.3 OCT2
162(7)
2.4 EMT
169(3)
3 Roundup
172(3)
References
175(6)
The Role of SNARE Proteins in Trafficking and Function of Neurotransmitter Transporters 181(16)
M.W. Quick
1 Introduction
182(4)
1.1 SNARE Proteins
182(2)
1.2 Syntaxin 1A Regulation of Ion Channels
184(1)
1.3 Initial Evidence for SNARE Regulation of Neurotransmitter Transporters
185(1)
2 Overview of Syntaxin IA Regulation of Neurotransmitter Transporters
186(2)
2.1 Glycine Transporters
186(1)
2.2 Amine Transporters
187(1)
2.3 Glutamate Transporters
187(1)
3 Details of Syntaxin lA Regulation of GAT1
188(3)
3.1 Regulation of GAT1 Trafficking
188(1)
3.2 Regulation of Intrinsic Properties of GAT1
189(2)
4 Syntaxin IA Regulation of SERT Conducting States
191(2)
5 Conclusions
193(1)
References
193(4)
Regulation of the Dopamine Transporter by Phosphorylation 197(18)
J.D. Foster, M.A. Cervinski, B.K. Gorentla, R.A. Vaughan
1 Introduction to the Dopamine Transporter
198(2)
1.1 The Na+/Cl-Dependent Neurotransmitter Transporter Family
198(1)
1.2 Interactions with Psychostimulants, Therapeutic Drugs, and Neurotoxins
199(1)
2 Dopamine Transporter Phosphorylation
200(9)
2.1 Effects of Kinases and Phosphatases
201(3)
2.2 Phosphorylation Sites
204(1)
2.3 Transporter Downregulation
205(1)
2.4 Effects of Substrates
206(2)
2.5 Effects of Transport Blockers
208(1)
3 Future Perspectives
209(1)
References
210(5)
The Dopamine Transporter: A Vigilant Border Control for Psychostimulant Action 215(18)
J.M. Williams, A. Galli
1 Introduction: Dopamine Transmission and Psychostimulants
216(2)
2 Ion Channel-Like Behavior of the DAT
218(3)
3 Regulation of DAT Function by Its Substrates
221(3)
4 Regulation of DAT Function by Its Inhibitors
224(1)
5 Dopamine D2 Receptor Modulation of DAT Function
225(1)
6 Summary
226(1)
References
227(6)
Oligomerization of Neurotransmitter Transporters: A Ticket from the Endoplasmic Reticulum to the Plasma Membrane 233(18)
H. Farhan, M. Freissmuth, H.H. Sitte
1 Oligomerization of Neurotransmitter Transporters
234(3)
1.1 The Structural Basis of Oligomer Formation
234(3)
2 The ER Export
237(3)
2.1 Selective Export Vs Selective Retention
238(2)
3 Oligomerization and ER Export
240(5)
3.1 Sensors of Oligomeric Assembly
242(1)
3.2 Oligomerization and Exit from the Golgi
242(1)
3.3 Life Visualization of Oligomer Formation in the Secretory Pathway
243(1)
3.4 The Importance of Oligomer Formation for the Action of Amphetamine
243(2)
References
245(6)
Acute Regulation of Sodium-Dependent Glutamate Transporters: A Focus on Constitutive and Regulated Trafficking 251(26)
M.B. Robinson
1 Introduction
252(2)
2 Characteristics of Na+-Dependent Glutamate Transporters
254(3)
2.1 Localization
254(1)
2.2 Contributions to Synaptic Transmission
254(2)
2.3 Role in Toxicity
256(1)
3 Rapid Regulation of Glutamate Transporters
257(13)
3.1 General Comments Regarding Plasma Membrane Expression of Glutamate Transporters
260(2)
3.2 Constitutive Trafficking of Glutamate Transporters
262(2)
3.3 EAAC1/EAAT3
264(3)
3.4 GLT-1/EAAT2
267(2)
3.5 GLAST/EAAT1
269(1)
4 Conclusions
270(1)
References
270(7)
Regulation and Dysregulation of Glutamate Transporters 277(28)
R. Sattler, J.D. Rothstein
1 Introduction
278(3)
1.1 Glutamate
278(2)
1.2 Glutamate Transporter
280(1)
2 Regulation of Glutamate Transporters
281(13)
2.1 Transcriptional and Translational Regulation
281(4)
2.1.1 EAAT2/GLT-1
281(3)
2.1.2 EAAT1/GLAST
284(1)
2.2 Po sttranslational Modification
285(9)
2.2.1 Transporter Protein Maturation
286(1)
2.2.2 Membrane Targeting and Stabilization
287(2)
2.2.3 Transporter Protein Trafficking
289(4)
2.2.4 Transporter Modification
293(1)
3 Dysregulation of Glutamate Transporters
294(2)
3.1 Dysregulation Through Altered Transcriptional Regulation
295(1)
3.2 Dysregulation Through Altered Transporter Targeting
296(1)
3.3 Dysregulation Through Altered Transporter Modification
296(1)
4 Conclusions
296(1)
References
297(8)
Regulation of Vesicular Monoamine and Glutamate Transporters by Vesicle-Associated Trimeric G Proteins: New Jobs for Long-Known Signal Transduction Molecules 305(22)
I. Brunk, M. Höltje, B. von Jagow, S. Winter, J. Sternberg, C. Blex, I. Pahner, G. Ahnert-Hilger
1 Introduction
306(1)
2 Secretory Vesicles and Their Neurotransmitter Transporters
306(3)
2.1 Vesicular Monoamine Transporters
307(1)
2.2 Vesicular Glutamate Transporters
307(2)
3 Factors Influencing Transmitter Content of Individual Vesicles
309(1)
4 Heterotrimeric G Proteins on Secretory Vesicles
310(2)
5 Differences in the Regulation of VMAT and VGLUT Activities
312(8)
5.1 The Role of the Electrochemical Gradient
312(2)
5.2 Gαol and Gαq as Modulators of Vesicular Filling
314(14)
5.2.1 G Protein-Mediated Regulation of VMAT Activity
314(3)
5.2.2 Gαol Regulates VGLUT Activity by Changing the Chloride Dependence of the Transporter
317(3)
6 Conclusions
320(1)
References
321(6)
Human Genetics and Pharmacology of Neurotransmitter Transporters 327(46)
Z. Lin, B.K. Madras
1 The Human Dopamine Transporter (SLC6A3)
328(15)
1.1 Introduction
328(3)
1.1.1 DAT Regulation and Adaptation
329(1)
1.1.2 Transient Effects
330(1)
1.1.3 DAT Regulation and the DAT Gene
330(1)
1.2 DAT Genomic Variants
331(3)
1.2.1 Introduction
331(2)
1.2.2 Coding Region Variants
333(1)
1.2.3 Non-coding Region Variants
333(1)
1.3 DAT Protein Variants
334(5)
1.4 Variations in DAT Expression Levels
339(1)
1.5 DAT Association with Human Diseases
340(3)
2 The Human Serotonin Transporter (SLC6A4)
343(8)
2.1 Introduction
343(1)
2.2 SERT Genomic Variants
344(3)
2.2.1 Introduction
344(1)
2.2.2 Coding Region Variants
344(1)
2.2.3 Non-coding Variants
344(3)
2.3 SERT Protein Variants
347(1)
2.4 Variations in SERT Expression Levels
348(2)
2.5 SERT Association with Human Diseases
350(1)
3 The Human Norepinephrine Transporter (SLC6A2)
351(5)
3.1 Introduction
351(1)
3.2 NET Genomic VARIANTS
352(2)
3.2.1 Non-coding Region Variants
352(2)
3.2.2 Coding Region Variants
354(1)
3.3 NET Protein Variants
354(1)
3.4 Variations in hNET Expression Levels
355(1)
3.5 NET Association with Human Diseases
356(1)
4 Transporter Gene Knockout Mice: Implications
356(1)
5 Summary
357(1)
References
357(16)
ADHD and the Dopamine Transporter: Are There Reasons to Pay Attention? 373(44)
M.S. Mazei-Robison, R.D. Blakely
1 Overview of ADHD
374(6)
1.1 Diagnosis and Prevalence of ADHD
374(1)
1.2 Cognitive Deficits in ADHD, the Search for Endophenotypes
375(2)
1.3 Treatment of ADHD
377(3)
2 The Human Dopamine Transporter
380(8)
2.1 Cloning the hDAT Gene
380(3)
2.2 DAT Protein: Structure/Function
383(2)
2.3 DAT Protein: Regulation
385(1)
2.4 DAT Protein: Pharmacological Impact on Transporter Regulation
386(2)
3 DAT Transgenics as Animal Models of ADHD
388(2)
3.1 DAT Knockout Mice as a Model of ADHD
388(1)
3.2 DAT Knockdown Mice as a Model of ADHD
389(1)
4 Neuroimaging DAT in Human Subjects
390(4)
4.1 DAT in Adult ADHD Subjects
390(2)
4.2 DAT in Children with ADHD
392(1)
4.3 Influence of DAT 3'VNTR on DAT Levels
393(1)
5 Genetic Linkage in ADHD and the Impact of DAT Gene Variants
394(9)
5.1 ADHD Linkage Studies
394(2)
5.2 Association Studies of hDAT and ADHD
396(2)
5.3 DAT 3'VNTR and Response to Methylphenidate
398(1)
5.4 Investigation of hDAT Coding Variants in ADHD
399(4)
References
403(14)
Inactivation of 5HT Transport in Mice: Modeling Altered 5HT Homeostasis Implicated in Emotional Dysfunction, Affective Disorders, and Somatic Syndromes 417(40)
K.P. Lesch, R. Mössner
1 Introduction
418(3)
2 Basic Features of 5HT Transporter Gene Inactivation
421(9)
2.1 Neurochemistry
421(1)
2.2 Receptor Expression and Function
422(2)
2.3 Electrophysiology
424(1)
2.4 Heterologous 5HT Clearance
425(1)
2.5 Modeling Anxiety- and Depression-Like Behavior
426(2)
2.6 5HT1A Receptor in Anxiety and Depression
428(2)
3 Brain Development and Plasticity
430(2)
3.1 Somatosensory Cortex and Visual System
430(1)
3.2 Dentate Gyrus and Neurogenesis
431(1)
4 Gene-Gene Interaction
432(2)
4.1 5HT Transporter, Monoamine Oxidase A, and 5HT1B Receptor
432(1)
4.2 5HT Transporter and Brain-Derived Neurotrophic Factor
433(1)
5 5HTT Inactivation as a Model for Serotonin-Related Somatic Disorders
434(3)
5.1 Primary Pulmonary Hypertension
435(1)
5.2 Irritable Bowel Syndrome
435(1)
5.3 Multiple Sclerosis
436(1)
5.4 Bone Growth
437(1)
5.5 Neuropathic Pain
437(1)
6 Alcohol and Other Substances of Abuse
437(2)
7 Linking 5HTT to Affective Spectrum Disorders
439(3)
7.1 Genetic Epidemiology
439(1)
7.2 Molecular Genetics
440(1)
7.3 Anxiety- and Depression-Related Traits
441(1)
8 Gene-Environment Interaction
442(2)
9 Molecular Imaging of Emotionality: A Risk Assessment Strategy for Depression?
444(3)
References
447(10)
Lessons from the Knocked-Out Glycine Transporters 457(28)
J. Gomeza, W. Armsen, H. Betz, V. Eulenburg
1 Neurotransmitter Functions of Glycine in the CNS
458(1)
2 GlyTs Are Members of the Na+/Cl-Dependent Transporter Family
459(5)
2.1 G1yT Gene Structures
459(1)
2.2 G1yT Protein Structure
460(2)
2.3 Glycine Uptake: Electrogenic Properties and Transport Mechanism
462(1)
2.4 Plasma Membrane Localization and Modulation of GlyTs
463(1)
3 Distribution of GlyTs in the CNS
464(3)
3.1 Tissue and Cellular Distribution
464(2)
3.2 Transcriptional Control
466(1)
4 Functional Roles of GlyTs
467(8)
4.1 Generation of G1yT-Deficient Mice
467(1)
4.2 GlyTs Are Essential for Vital Postnatal Functions
468(1)
4.3 Essential Functions of GlyTs at Glycinergic Synapses
469(2)
4.4 Pharmacology of GlyTs
471(2)
4.5 Function of GlyTs at Glutamatergic Synapses
473(2)
4.5.1 Pharmacological Studies In Vitro
473(1)
4.5.2 Pharmacology and Genetics In Vivo
474(1)
5 GlyTs and Human Diseases
475(2)
5.1 G1yT Genes: Candidate Disease Loci?
475(1)
5.2 GlyTs as Potential Drug Targets
476(1)
6 Conclusions and Perspectives
477(1)
References
478(7)
The Norepinephrine Transporter in Physiology and Disease 485(40)
H. Bönisch, M. Brüss
1 Introduction
486(1)
2 Properties, Physiology and Pharmacology of the NET
487(6)
2.1 Basic Properties and Mechanisms of Transport
487(5)
2.1.1 Co-substrates and Direction of Transport
489(2)
2.1.2 NET Inhibitors
491(1)
2.2 Physiological Importance and Knockout of the NET
492(1)
3 Tissue Expression
493(1)
4 Regulation of NET Function and Expression
494(3)
5 Structure-Function Relationship
497(4)
6 Gene Structure, Promoter and Alternative Splicing
501(1)
7 hNET: Significance in Disease, Therapy and Diagnosis
502(10)
7.1 Genetic Variations
502(2)
7.2 NET and Dysautonomia
504(1)
7.3 NET and Hypertension
505(1)
7.4 NET and Myocardial Ischemia
505(1)
7.5 NET and Obesity
506(1)
7.6 NET and Anorexia Nervosa
506(1)
7.7 NET and ADHD
507(1)
7.8 NET and Depression
508(1)
7.9 NET and Addiction
509(1)
7.10 NET and Pain
510(1)
7.11 NET Ligands in Diagnosis and Therapy
511(1)
References
512(13)
The High-Affinity Choline Transporter: A Critical Protein for Sustaining Cholinergic Signaling as Revealed in Studies of Genetically Altered Mice 525(20)
M.H. Bazalakova, R.D. Blakely
1 CHT Function and Regulation
526(5)
1.1 HACU and Cholinergic Neurotransmission
526(2)
1.2 Pharmacological and Behavioral Modulation of HACU
528(1)
1.3 Cloning the CHT Gene
529(1)
1.4 CHT Provides the Molecular Basis of HACU Regulation
530(1)
2 CHT and Genetic Mouse Models of Cholinergic Dysfunction
531(6)
2.1 CHT Is Required for Survival: CHT Homozygosity Is Lethal
531(3)
2.2 CHT Is Upregulated in the AChE-/- Mouse
534(1)
2.3 CHT Is Also Upregulated in the AChE Transgenic Mouse
535(1)
2.4 CHT Upregulation Provides Mechanism of Compensation in ChAT+/- Mice
536(1)
2.5 CHT Downregulation in α3-/- Mice
537(1)
3 CHT+/- Mice as Models of Cholinergic Dysfunction
537(3)
3.1 Functional Compensation and Normal Basal Behaviors in CHT+/- Mice
538(1)
3.2 Physical and Pharmacological Challenges Reveal Motor Phenotypes in CHT+/- Mice
538(1)
3.3 Muscarinic Expression Is Altered in CHT+/- Mice
539(1)
References
540(5)
Subject Index 545

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program