rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9781402033360

Neutron And X-Ray Spectroscopy

by ; ;
  • ISBN13:

    9781402033360

  • ISBN10:

    1402033362

  • Format: Hardcover
  • Copyright: 2006-01-15
  • Publisher: Kluwer Academic Pub
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $219.99 Save up to $162.75
  • Digital
    $124.02*
    Add to Cart

    DURATION
    PRICE
    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.

Summary

Scientific research involving neutrons or synchrotron radiation is performed in large experimental installations at a few sites around the world. Taking full advantage of such techniques requires a wide range of specialized expertise not found in any university course. Therefore, there is a need for reference books and training courses to introduce young scientists to the underlying principles and methods.Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course at the European Synchrotron Radiation Facility) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend their knowledge.

Table of Contents

Contributors XV
Foreword XIX
Introduction XXI
X-RAY SPECTROSCOPY
1 Fundamentals of X-ray absorption and dichroism: the multiplet approach
F. de Groot, J. Vogel
3(64)
1. Introduction
4(7)
1.1. Interaction of X-rays with matter
4(2)
1.2. Basics of XAFS spectroscopy
6(3)
1.3. Experimental aspects
9(2)
2. Multiplet effects
11(20)
2.1. Atomic multiplets
14(1)
2.1.1. Term symbols
14(1)
2.1.2. Matrix elements
18(2)
2.2. Atomic multiplet ground states of 3dn systems
20(1)
2.3. j -j coupling
20(1)
2.4. X-ray absorption spectra described with atomic multiplets
21(1)
2.4.1. Transition metal II-III edge
21(1)
2.4.2. MIV-V edges of rare earths
28(3)
3. Crystal field theory
31(16)
3.1. The crystal field multiplet Hamiltonian
32(1)
3.2. Cubic crystal fields
33(3)
3.3. The energies of the 3dn configurations
36(1)
3.3.1. Symmetry effects in D4h symmetry
40(1)
3.3.2. The effect of the 3d spin-orbit coupling
40(1)
3.3.3. The effects on the X-ray absorption calculations
42(1)
3.3.4. 3d° systems in octahedral symmetry
42(1)
3.3.5. 3d° systems in lower symmetries
45(1)
3.3.6. X-ray absorption spectra of 3dn systems
46(1)
4. Charge transfer effects
47(12)
4.1. Initial state effects
47(5)
4.2. Final state effects
52(1)
4.3. The X-ray absorption spectrum with charge transfer effects
53(6)
5. X-ray linear and circular dichroism
59(5)
References
64(3)
2 Multiple scattering theory applied to X-ray absorption near-edge structure
P. Sainctavit, D. Cabaret, V. Briois
67(36)
1. Introduction
67(3)
2. MST for real space calculations
70(13)
2.1. The absorption cross-section
71(2)
2.2. Calculation of the cross-section for three different potentials
73(1)
2.2.1. Free particle
73(1)
2.2.2. Particle in a spherical potential
75(1)
2.2.3. Particle in a "muffin-tin" potential
78(5)
3. Construction of the potential
83(6)
3.1. X— α exchange potential
85(1)
3.2. Dirac-Hara exchange potential
85(2)
3.3. Complex Hedin-Lundqvist exchange and correlation potential
87(2)
4. Application of the multiple scattering theory
89(6)
4.1. Vanadium K edge cross-section for VO6 cluster
90(3)
4.2. Iron K edge cross-section for FeO6 cluster
93(1)
4.3. Cross-section calculations in distorted octahedra
94(1)
5. Spin transition in FeII(o-phenantroline)2 (NCS) 2 followed at the iron K edge
95(2)
6. Conclusion
97(1)
Appendix Expression for the propagators JiLjL, and HiLjL,
97(2)
Acknowledgments
99(1)
References
100(3)
3 X-ray magnetic circular dichroism
F. Baudelet
103(28)
1. Introduction
103(1)
2. Origins of magnetic circular dichroism
104(10)
2.1. Theoretical aspects: role of the spin-orbit coupling
104(2)
2.2. Light polarization and polarization-dependent selection rules
106(2)
2.3. Origin of the XMCD signal
108(1)
2.3.1. Heuristic model: LII - LIII edges of transition metals and rare earth elements
108(1)
2.3.2. Calculation of Pe for the LII - LIII edges: Pe(LII) and Pe(LIII)
109(1)
2.3.3. Calculation of Pe for the K - LI edges: Pe(K) and Pe(LI)
112(1)
2.4. Magnitude of the XMCD signal
113(1)
3. The sum rules
114(3)
4. XMCD signal at the K edges (1s -> ρ)
117(1)
5. XMCD and localized magnetism (multiplet approach)
118(3)
6. LII-III edges of rare earths
121(4)
7. Magnetic EXAFS
125(1)
8. Application to multilayers with GMR
126(1)
9. Study of highly correlated [Ce/La/Fe] and [La/Ce/Fe] multilayers
127(1)
References
128(3)
4 Extended X-ray absorption fine structure
B. Lengeler
131(38)
1. Introduction
131(2)
2. X-ray absorption in isolated atoms
133(3)
3. X-ray absorption fine structure (XAFS)
136(17)
3.1. X-ray absorption fine structure: the basic formula
136(5)
3.2. Corrections to the basic EXAFS formula
141(1)
3.2.1. Spherical photoelectron wave
142(1)
3.2.2. Multiple scattering
142(1)
3.3. Set-up for measuring X-ray absorption
143(2)
3.4. XAFS data analysis
145(4)
3.5. Position and structure of the absorption edge
149(4)
4. Some applications of XAS
153(14)
4.1. Lattice distortion around impurities in dilute alloys
154(1)
4.2. Precipitation in immiscible giant magnetoresistance Ag1-x Nix alloys
155(3)
4.3. Lattice site location of very light elements in metals by XAFS
158(2)
4.4. Valence of iridium in anodically oxidized iridium films
160(3)
4.5. Copper-based methanol synthesis catalyst
163(2)
4.6. Combined X-ray absorption and X-ray crystallography
165(2)
References
167(2)
5 Inelastic X-ray scattering from collective atom dynamics
F. Sette, M. Krisch
169(20)
1. Introduction
169(1)
2. Scattering kinematics and inelastic X-ray scattering cross-section
170(5)
3. Experimental apparatus
175(4)
4. The "fast sound" phenomenon in liquid water
179(3)
5. Determination of the longitudinal sound velocity in iron to 110 GPa
182(4)
6. Conclusions and outlook
186(1)
References
187(2)
6 Photoelectron spectroscopy
M. Grioni
189(50)
1. Introduction
189(1)
2. What is photoemission?
190(3)
3. Photoemission in the single-particle limit - Band mapping
193(8)
4. Beyond the single-particle approximation
201(8)
5. Case studies
209(26)
5.1. Fermi liquid lineshape in a normal metal
209(6)
5.2. Gap spectroscopy
215(5)
5.3. Electronic instabilities in low dimensions
220(9)
5.4. Some recent developments
229(6)
6. Conclusions
235(1)
References
236(3)
7 Anomalous scattering and diffraction anomalous fine structure
J.L. Hodeau, H. Renevier
239(32)
1. Anomalous scattering, absorption and refraction
240(1)
2. Theoretical versus experimental determination of anomalous contribution
241(3)
3. Applications of anomalous dispersion
244(5)
3.1. Structure factor phase solution (MAD method)
245(2)
3.2. Element-selective diffraction (contrast method)
247(2)
4. Diffraction anomalous fine structure data analysis
249(13)
4.1. DAFS and EDAFS formalism
251(1)
4.1.1. Single anomalous site analysis
252(1)
4.1.2. Multiple anomalous site analysis
253(2)
4.2. DAFS and EDAFS determination
255(3)
4.3. DAFS and DANES valence determination
258(2)
4.4. Anisotropy of anomalous scattering
260(2)
5. Requirements for anomalous diffraction experiments
262(1)
6. Conclusion
263(1)
References
264(7)
8 Soft X-ray photoelectron emission microscopy (X-PEEM)
C.M. Schneider
271(26)
1. A "nanoscale" introduction
271(1)
2. Visualizing micro- and nanostructures
271(2)
3. Technical aspects of an Electron Emission Microscope (EEM)
273(3)
3.1. Electron-optical considerations
273(2)
3.2. Transmission and lateral resolution
275(1)
4. Non-magnetic image contrast in X-PEEM
276(5)
4.1. Primary contrast mechanisms
276(1)
4.1.1. Work function contrast
276(1)
4.1.2. Chemical contrast
277(3)
4.2. Secondary contrast mechanisms
280(1)
5. Magnetic contrast in X-PEEM
281(11)
5.1. Magnetic X-ray Circular Dichroism (XMCD)
282(1)
5.1.1. Physics of the magnetic contrast mechanism
282(1)
5.1.2. Contrast enhancement
284(1)
5.1.3. Angular dependence of the image contrast
285(1)
5.1.4. Magnetic domain walls
286(1)
5.1.5. Information depth
288(2)
5.2. X-ray Magnetic Linear Dichroism (XMLD)
290(1)
5.2.1. Properties of the contrast mechanism
290(1)
5.2.2. Imaging domains in antiferromagnets
291(1)
6. Concluding remarks
292(1)
References
293(4)
9 X-ray intensity fluctuation spectroscopy
M. Sutton
297(22)
1. Introduction
297(4)
2. Mutual coherence functions
301(3)
3. Diffraction by partially coherent sources
304(4)
4. Kinetics of materials
308(2)
5. X-ray intensity fluctuation spectroscopy
310(6)
6. Conclusions
316(1)
References
317(2)
10 Vibrational spectroscopy at surfaces and interfaces using synchrotron sources and free electron lasers
A. Tadjeddine, P. Dumas
319(42)
1. Introduction
319(2)
2. Infrared synchrotron source and free electron lasers
321(10)
2.1. Infrared synchrotron sources
321(1)
2.1.1. Principles
321(1)
2.1.2. Extraction of the IR beam from the synchrotron ring
324(1)
2.1.3. Fourier transform interferometer
324(1)
2.2. Non linear surface spectroscopy with conventional and free electron lasers
325(1)
2.2.1. Principle of SFG
326(1)
2.2.2. Experimental SFG set-up
328(1)
2.2.3. The CLIO-FEL infrared laser
328(3)
3. Examples of applications in Surface Science
331(25)
3.1. Synchrotron infrared spectroscopy at surfaces
331(1)
3.1.1. Low frequency modes of adsorbed molecules and atoms
333(1)
3.1.2. Vibrational dynamics of low frequency modes
335(4)
3.2. Sum Frequency and Difference Frequency Generation at interfaces
339(1)
3.2.1. Identification of adsorbed intermediate of electrochemical reactions by SFG
340(1)
3.2.2. Vibrational spectroscopy of cyanide at metal-electrolyte interface
342(1)
3.2.3. Vibrational spectroscopy of self-assembled monolayers on metal substrate
346(1)
3.2.4. Vibrational spectroscopy offullerenes C60, adsorbed on Ag(111), in UHV environment
348(1)
3.2.5. Adsorption of 4-cyanopyridine on Au(111) monitored by SFG
352(4)
4. Conclusion and outlook
356(1)
References
356(5)
NEUTRON SPECTROSCOPY
11 Inelastic neutron scattering: introduction
R. Scherm, B. Fåk
361(1)
1. Interaction of neutrons with matter
361(1)
2. Kinematics
362(21)
2.1. Energy and momentum conservation
362(1)
2.2. Scattering triangle
363(1)
2.3. Parabolas
364(1)
3. Master equation and S (Q, ω)
364(2)
4. Correlation function
366(1)
5. Coherent and incoherent scattering
367(2)
6. General properties of S (Q, ω)
369(1)
6.1. Detailed balance
369(1)
6.2. Moments
370(1)
6.3. Total versus elastic scattering
371(1)
7. Magnetic scattering
372(1)
8. Response from simple systems
373(1)
8.1. Examples
373(2)
8.2. Response functions
375(1)
9. Instrumentation
376(2)
9.1. TAS
378(1)
9.2. TOF
379(1)
10. How to beat statistics
379(1)
References
380(3)
12 Three-axis inelastic neutron scattering
R. Currat
383(1)
1. Principle of the technique
383(3)
2. The three-axis spectrometer
386(5)
3. The TOF versus TAS choice
391(3)
4. What determines the TAS count rate?
394(2)
5. What determines the size and shape of the resolution function?
396(4)
6. Decoupling energy and momentum resolutions: direct space focusing
400(3)
7. TAS multiplexing
403(5)
8. Phonon studies with TAS
408(4)
9. The INS versus IXS choice
412(3)
10. Magnetic excitation studies with TAS
415(5)
11. Practical aspects
420(2)
12. Summary and outlook
422(1)
References
423(4)
13 Neutron spin echo spectroscopy
R. Cywinski
427(30)
1. Introduction
427(1)
2. Polarized neutron beams, Larmor precession and spin flippers
428(4)
3. Generalized neutron spin echo
432(4)
4. Polarization dependent scattering processes
436(4)
5. Practicalities: measurement of the spin echo signal
440(4)
6. Applications of neutron spin echo spectroscopy
444(9)
6.1. Soft condensed matter
444(3)
6.2. Glassy dynamics
447(2)
6.3. Spin relaxation in magnetic systems
449(4)
7. Conclusions
453(1)
Bibliography
453(1)
References
454(3)
14 Time-of-flight inelastic scattering
R. Eccleston
457(26)
1. Introduction
457(1)
2. Classes of TOF spectrometers
458(3)
2.1. Distance-time plots
458(2)
2.2. Kinematic range
460(1)
3. Beamline components
461(4)
3.1. Choppers
461(1)
3.1.1. Fermi choppers
462(1)
3.1.2. Disk choppers
462(1)
3.1.4. T = 0 choppers
462(1)
3.2. Monochromating and analyzing crystals
463(1)
3.3. Filters
463(1)
3.4. Detectors
464(1)
3.5. Neutron guides
464(1)
3.6. Polarizers and polarization analysis
465(1)
4. Direct geometry spectrometers
465(4)
4.1. Chopper spectrometer on a pulsed source
465(1)
4.2. Chopper spectrometers on a steady state source
466(1)
4.3. Multi-chopper TOF spectrometers
467(2)
5. Resolution and spectrometer optimization
469(1)
6. Flux
470(1)
7. Resolution as a function of energy transfer and experimental considerations
471(3)
Single crystal experiments on a chopper spectrometer
472(2)
8. Indirect geometry spectrometers
474(6)
8.1. The resolution of indirect geometry spectrometers
475(1)
8.2. Backscattering spectrometer
475(2)
8.3. Crystal analyzer spectrometers
477(1)
8.4. Deep inelastic neutron scattering
478(1)
8.5. Coherent excitations
479(1)
9. Conclusions
480(1)
Further information
481(1)
References
481(2)
15 Neutron backscattering spectroscopy
B. Frick
483(46)
1. Introduction
483(2)
2. Reflection from perfect crystals and its energy resolution
485(3)
3. Generic backscattering spectrometer concepts
488(6)
3.1. Neutron optics of the primary spectrometers of reactor-BS instruments
489(4)
3.2. Neutron optics of the primary spectrometer of spallation source-BS instruments
493(1)
3.3. Secondary spectrometer
493(1)
4. Total energy resolution of the spectrometers
494(1)
5. How to do spectroscopy?
494(4)
5.1. Spectroscopy on reactor based instruments
494(3)
5.2. Spectroscopy on spallation source-BS instruments
497(1)
6. More details on optical components
498(7)
6.1. BS monochromators and analyzers
498(1)
6.2. How to obtain the best energy resolution in backscattering?
499(1)
6.3. Mosaic crystal deflectors and phase space transformer
500(3)
6.4. Neutron guides
503(1)
6.5. Higher order suppression
503(1)
6.6. Q-resolution
504(1)
6.7. A second time through the sample?
504(1)
7. Examples for backscattering instruments
505(6)
7.1. Reactor instruments
505(4)
7.2. Spallation source instruments
509(2)
8. Data treatment
511(2)
9. Typical measuring methods and examples
513(12)
9.1. Fixed window scans
513(3)
9.2. Spectroscopy
516(9)
References
525(4)
16 Neutron inelastic scattering and molecular modelling
M.R. Johnson, G.J. Kearley, H.P. Trommsdorff
529(28)
1. Introduction
529(3)
2. Theory framework for tunnelling, vibrations and total energy calculations
532(8)
2.1. Hamiltonians for quantum tunnelling
532(4)
2.2. The dynamical matrix for molecular vibrations
536(2)
2.3. Total energy calculations for determining PES and force constants
538(2)
3. Experimental techniques for measuring rotational tunnelling and molecular vibrations
540(4)
4. Numerical simulations for understanding INS spectra
544(7)
4.1. SPM methyl group tunnelling
544(2)
4.2. Multi-dimensional tunnelling dynamics of methyl groups
546(1)
4.3. Vibrational spectroscopy of molecular crystals
547(4)
5. Discussion
551(2)
References
553(4)
Index 557

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program