rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780470699614

Nmr Crystallography

by ; ;
  • ISBN13:

    9780470699614

  • ISBN10:

    0470699612

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2009-12-21
  • Publisher: Wiley

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $211.99 Save up to $60.95
  • Rent Book $151.04
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Nmr Crystallography [ISBN: 9780470699614] for the semester, quarter, and short term or search our site for other textbooks by Harris, Robin K.; Wasylishen, Roderick E.; Duer, Melinda J.. Renting a textbook can save you up to 90% from the cost of buying.

Summary

The term "NMR Crystallography" has only recently come into common usage, and even now causes raised eyebrows within some parts of the diffraction community. The power of solid-state NMR to give crystallographic information has considerably increased since the CPMAS suite of techniques was introduced in 1976. In the first years of the 21st century, the ability of NMR to provide information to support and facilitate the analysis of single-crystal and powder diffraction patterns has become widely accepted. Indeed, NMR can now be used to refine diffraction results and, in favorable cases, to solve crystal structures with minimal (or even no) diffraction data. The increasing ability to relate chemical shifts (including the tensor components) to the crystallographic location of relevant atoms in the unit cell via computational methods has added significantly to the practice of NMR crystallography. Diffraction experts will increasingly welcome NMR as an allied technique in their structural analyses. Indeed, it may be that in the future crystal structures will be determined by simultaneously fitting diffraction patterns and NMR spectra.This Handbook is organised into six sections. The first contains an overview and some articles on fundamental NMR topics, followed by a section concentrating on chemical shifts, and one on coupling interactions. The fourth section contains articles describing how NMR results relate to fundamental crystallography concepts and to diffraction methods. The fifth section concerns specific aspects of structure, such as hydrogen bonding. Finally, four articles in the sixth section give applications of NMR crystallography to structural biology, organic & pharmaceutical chemistry, inorganic & materials chemistry, and geochemistry.The Encyclopedia of Magnetic Resonance EMR publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks on specific areas of NMR and MRI. The chapters of each of these Handbooks will comprise a carefully chosen selection of Encyclopedia articles. In consultation with the EMR Editorial Board, the EMR HANDBOOKS are coherently planned in advance by specially-selected Editors, and new articles written (together with updating of some already existing articles) to give appropriate complete coverage. The Handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the topic in question and undertaking relevant experiments, whether in academia or industry.Visit the online Encyclopedia of Magnetic Resonance at www.mrw.interscience.wiley.com/emr

Author Biography

Robin Kingsley Harris, Emeritus Professor of Chemistry, University of Durham, UK
Editor-in-Chief of the Encyclopedia of NMR 1st Edition and the Encyclopedia of MR 2nd Edition.

Roderick Wasylishen, Professor, University of Alberta, Edmonton, Alberta, CANADA.

Dr Melinda Duer, Department of Chemistry, University of Cambridge, UK.

Table of Contents

Contributors.

Series Preface.

Volume Preface.

Part A: Introduction.

1 Crystallography & NMR: an Overview (Robin K. Harris).

2 Tensors in NMR (S. Chandra Shekar, Alexej Jerschow).

3 Computation of Magnetic Resonance Parameters for Crystalline Systems: Principles (Jonathan R. Yates, Chris J. Pickard).

4 Experimental Characterization of Nuclear Spin Interaction Tensors (Jeremy J. Titman).

Part B: Chemical Shifts.

5 Magnetic Shielding & Chemical Shifts: Basics (Julio C. Facelli, Anita M. Orendt).

6 Symmetry Effects at the Local Level (Matthias Bechmann, Angelika Sebald).

7 Chemical Shift Computations for Crystalline Molecular Systems: Practice (Robin K. Harris, Paul Hodgkinson, Chris J. Pickard, Jonathan R. Yates, Vadim Zorin).

8 Chemical Shifts & Solid-state Molecular-level Structure (Anita M. Orendt, Julio C. Facelli).

9 Chemical Shift Anisotropy & Asymmetry: Relationships to Crystal Structure (James K. Harper).

Part C: Coupling Interactions.

10 Dipolar & Indirect Coupling: Basics (Roderick E. Wasylishen).

11 Dipolar Recoupling: Heteronuclear (Christopher P. Jaroniec).

12 Dipolar Recoupling: Homonuclear (Robert Tycko).

13 Dipolar Coupling: Molecular-level Mobility (Detlef Reichert, Kay Saalwächter).

14 Spin Diffusion in Crystalline Solids (Lyndon Emsley).

15 Indirect Coupling & Connectivity (Anne Lesage).

16 Nuclear Quadrupole Coupling: An Introduction & Crystallographic Aspects (Sharon E. Ashbrook, Stephen Wimperis).

Part D: Crystal Structure Determination using NMR.

17 Fundamental Principles of NMR Crystallography (Francis Taulelle).

18 Interplay between NMR & Single-crystal X-ray Diffraction (Darren H. Brouwer).

19 Combined Analysis of NMR & Powder Diffraction Data (Kenneth D.M. Harris, Mingcan Xu).

20 Tensor Interplay (David L. Bryce).

Part E: Properties of the Crystalline State.

21 Intermolecular Interactions & Structural Motifs (Lindsay S. Cahill, Gillian R. Goward).

22 Hydrogen Bonding in Crystalline Organic Solids (Steven P. Brown).

23 Inorganic Non-stoichiometric Crystalline Systems & Atomic Ordering (Mark E. Smith).

24 Rotational & Translational Dynamics (Christopher I. Ratcliffe).

25 Intramolecular Motion in Crystalline Organic Solids (Paul Hodgkinson).

26 Structural Phase Transitions (Kenneth R. Jeffrey, Glenn H. Penner).

Part F: Applications of NMR to Crystalline Solids.

27 Structural Biology (David A. Middleton).

28 Organic & Pharmaceutical Chemistry (Marek J. Potrzebowski).

29 Inorganic & Materials Chemistry (Ray Dupree).

30 Geochemistry (Brian L. Phillips).

Index.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program