rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780521018111

Nuclear Magnetic Resonance and Relaxation

by
  • ISBN13:

    9780521018111

  • ISBN10:

    0521018110

  • Format: Paperback
  • Copyright: 2005-08-22
  • Publisher: Cambridge University Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $71.99 Save up to $20.70
  • Rent Book $51.29
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    SPECIAL ORDER: 1-2 WEEKS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Nuclear Magnetic Resonance and Relaxation [ISBN: 9780521018111] for the semester, quarter, and short term or search our site for other textbooks by Brian Cowan. Renting a textbook can save you up to 90% from the cost of buying.

Summary

This book provides an introduction to the general principles of nuclear magnetic resonance and relaxation, concentrating on simple models and their application. The concepts of relaxation and the time domain are particularly emphasised. Some relatively advanced topics are treated, but the approach is graduated and all points of potential difficulty are carefully explained. An introductory classical discussion of relaxation is followed by a quantum-mechanical treatment. Only when the the principles of relaxation are firmly established is the density operator approach introduced; and then its power becomes apparent. A selection of case studies is considered in depth, providing applications of the ideas developed in the text. There are a number of appendices, including one on random functions. This treatment of one of the most important experimental techniques in modern science will be of great value to final-year undergraduates, graduate students and researchers using nuclear magnetic resonance, particularly physicists, and especially those involved in the study of condensed matter physics.

Table of Contents

Preface xix
1 Introduction
1(19)
1.1 Historical overview
1(3)
1.1.1 The interaction of radiation with matter
1(1)
1.1.2 Nuclear magnetic resonance
1(1)
1.1.3 The first observations of NMR
2(1)
1.1.4 Pulsed NMR
2(1)
1.1.5 Scope of this book
3(1)
1.2 Nuclear magnetism
4(4)
1.2.1 Magnetic moments
4(1)
1.2.2 Nuclear magnetic moments
5(1)
1.2.3 Energy splitting and resonance
5(1)
1.2.4 Uses of NMR
6(2)
1.3 Two views of resonance
8(4)
1.3.1 The damped harmonic oscillator
8(1)
1.3.2 Time response
8(1)
1.3.3 Frequency response
9(1)
1.3.4 Linearity and superposition
10(1)
1.3.5 Fourier duality
11(1)
1.4 Larmor precession
12(5)
1.4.1 Spin equation of motion
12(1)
1.4.2 Precession
13(1)
1.4.3 Quantum versus classical treatment
14(1)
1.4.4 Behaviour of real systems — relaxation
15(2)
1.5 Typical signal size
17(3)
1.5.1 The induced voltage
17(1)
1.5.2 Initial conditions
17(1)
1.5.3 A typical system
18(1)
1.5.4 Other considerations
19(1)
2 Theoretical background
20(26)
2.1 Paramagnetism and Curie's Law
20(4)
2.1.1 Paramagnetism
20(1)
2.1.2 Calculation of magnetisation
21(1)
2.1.3 Curie's Law
22(1)
2.1.4 Magnetic susceptibility
23(1)
2.1.5 Conditions for linearity
23(1)
2.2 Relaxation
24(2)
2.2.1 Equilibrium states
24(1)
2.2.2 The relaxation process
24(1)
2.2.3 Spin interactions
25(1)
2.2.4 Spin–lattice and spin–spin relaxation
25(1)
2.2.5 The Bloch equations
25(1)
2.3 Quantum and classical descriptions of motion
26(4)
2.3.1 The Heisenberg equation
26(2)
2.3.2 Equation of motion for μ
28(1)
2.3.3 Evaluation of commutators
29(1)
2.3.4 Expectation values
29(1)
2.4 The rotating frame
30(3)
2.4.1 The equivalence principle
30(1)
2.4.2 Transformation to the rotating frame
31(1)
2.4.3 The fictitious field
32(1)
2.5 Rotating and oscillating fields
33(4)
2.5.1 Rotating and counter-rotating components
33(1)
2.5.2 The effective field
34(1)
2.5.3 Resonant transverse field
35(1)
2.5.4 90° and 180° pulses
35(2)
2.6 The dynamic magnetic susceptibility
37(9)
2.6.1 Complex susceptibility
37(2)
2.6.2 Dynamic magnetic susceptibility
39(2)
2.6.3 The transverse relaxation function
41(3)
2.6.4 Response to linearly polarised field
44(2)
3 Detection methods
46(37)
3.1 The CW method
46(8)
3.1.1 Frequency and time domains
46(1)
3.1.2 Detection of CW NMR
47(1)
3.1.3 Q meter detection
48(3)
3.1.4 Saturation
51(3)
3.2 The pulsed NMR spectrometer
54(7)
3.2.1 Outline of a pulsed NMR system
54(2)
3.2.2 Pulse programmer
56(1)
3.2.3 The transmitter
57(1)
3.2.4 The receiver
58(2)
3.2.5 Display of signals
60(1)
3.3 Magnets
61(2)
3.3.1 Basic requirements
61(1)
3.3.2 Homogeneity
61(1)
3.3.3 Time stability
61(1)
3.3.4 Maximum field
62(1)
3.3.5 Large volume magnets
62(1)
3.4 The sample probe and noise considerations
63(12)
3.4.1 Introduction
63(1)
3.4.2 Electrical noise
64(1)
3.4.3 The NMR probe
65(4)
3.4.4 Signal-to-noise ratio
69(3)
3.4.5 Recovery time
72(1)
3.4.6 The Ernst angle
73(2)
3.5 Refinements to the CW method
75(8)
3.5.1 Uses of CW NMR
75(1)
3.5.2 The Robinson oscillator
76(2)
3.5.3 Lock-in detection of CW NMR
78(1)
3.5.4 Modulation distortion
79(4)
4 Classical view of relaxation
83(41)
4.1 Transverse relaxation in solids
83(5)
4.1.1 Local magnetic fields
83(1)
4.1.2 Solution of equations of motion
84(2)
4.1.3 Relaxation times
86(1)
4.1.4 Shape of the FID
87(1)
4.2 Motion and transverse relaxation
88(6)
4.2.1 Averaging of the local fields
88(2)
4.2.2 The equations of motion
90(2)
4.2.3 Gaussian distribution of phases
92(2)
4.2.4 The autocorrelation function
94(1)
4.3 Consequences of the model
94(6)
4.3.1 The correlation time
94(2)
4.3.2 Exponential relaxation
96(2)
4.3.3 Gaussian relaxation
98(1)
4.3.4 Condition for exponential or Gaussian decay
98(2)
4.4 Spin echoes
100(4)
4.4.1 Recovery of lost magnetisation
100(1)
4.4.2 Effect of a 180° pulse
101(1)
4.4.3 Formation of a spin echo
102(1)
4.4.4 72 and 7*2
102(2)
4.5 Diffusion and its measurement
104(6)
4.5.1 Echo relaxation function
104(2)
4.5.2 Diffusion autocorrelation function
106(2)
4.5.3 Cubic echo decay
108(1)
4.5.4 Rapid diffusion
108(2)
4.6 Measuring relaxation times
110(14)
4.6.1 Measurement of 7*2
110(1)
4.6.2 Measurement of T2
111(3)
4.6.3 Pulse errors
114(3)
4.6.4 Measurement of T1
117(2)
4.6.5 Techniques when T1 is long
119(2)
4.6.6 Accurate adjustment of the spectrometer
121(1)
4.6.7 Data processing and curve fitting
122(2)
5 Quantum treatment of relaxation
124(33)
5.1 Introduction
124(1)
5.1.1 Relaxation and resonance
124(1)
5.1.2 The equilibrium state
124(1)
5.1.3 The present approach
125(1)
5.2 Expectation values of quantum operators
125(7)
5.2.1 Expectation values: statement of the problem
125(1)
5.2.2 Systems in equilibrium
126(3)
5.2.3 Time independence of equilibrium quantities
129(2)
5.2.4 Systems not in equilibrium
131(1)
5.3 Behaviour of magnetisation in pulsed NMR
132(2)
5.3.1 The Hamiltonian
132(1)
5.3.2 Some approximations
133(1)
5.3.3 90° and 180° pulses
133(1)
5.4 The relaxation functions of NMR
134(9)
5.4.1 Relaxation of longitudinal and transverse magnetisation
134(2)
5.4.2 Complex form for transverse relaxation
136(1)
5.4.3 The interaction picture
137(5)
5.4.4 The relaxation functions
142(1)
5.5 The dipolar and other interactions
143(14)
5.5.1 The dipole—dipole interaction
143(1)
5.5.2 The dipolar Hamiltonian
144(2)
5.5.3 Like spins
146(1)
5.5.4 Electron—nucleus interactions
147(1)
5.5.5 Quadrupole interactions: classical picture
148(2)
5.5.6 Quadrupole interactions: quantum expressions
150(2)
5.5.7 Chemical shifts: basic ideas
152(2)
5.5.8 Isotropic chemical shift
154(1)
5.5.9 Anisotropic chemical shift
155(2)
6 Dipolar lineshape in solids
157(50)
6.1 Transverse relaxation: rigid lattice lineshape
157(10)
6.1.1 Introduction
157(2)
6.1.2 A pair of spins
159(4)
6.1.3 Pake's doublet
163(2)
6.1.4 Gypsum monocrystal
165(1)
6.1.5 Three and more spins
166(1)
6.2 A class of solvable systems
167(14)
6.2.1 Local field models
167(1)
6.2.2 The relaxation function
168(5)
6.2.3 A model interaction
173(2)
6.2.4 Magnetically dilute solids
175(3)
6.2.5 Dilute solids in n dimensions
178(3)
6.3 The method of moments
181(17)
6.3.1 Rationale for the moment method
181(4)
6.3.2 Formal expressions for the moments
185(2)
6.3.3 Calculation of dipolar moments
187(1)
6.3.4 Special shapes and their moments
188(3)
6.3.5 A second look at magnetically dilute solids
191(1)
6.3.6 Real systems
192(1)
6.3.7 Widom's Theorem
193(5)
6.4 Memory functions and related methods
198(9)
6.4.1 The memory equation
198(1)
6.4.2 Laplace transformation
199(1)
6.4.3 Moment expansions
200(2)
6.4.4 Relations between the moments of F(t) and Φ(t)
202(1)
6.4.5 Gaussian memory function
202(2)
6.4.6 Exponential memory function
204(3)
7 Relaxation in liquids
207(47)
7.1 Transverse relaxation: moments
207(8)
7.1.1 Relaxation in liquids
207(1)
7.1.2 Interaction picture
208(2)
7.1.3 Moments and motion
210(1)
7.1.4 Descriptions of motion
211(1)
7.1.5 Semiclassical expressions for moments
212(2)
7.1.6 Conclusions
214(1)
7.2 Cumulant expansion treatment of relaxation
215(10)
7.2.1 Introduction to the method
215(3)
7.2.2 Evaluation of the terms
218(3)
7.2.3 Transverse correlation functions
221(1)
7.2.4 Longitudinal correlation functions
222(1)
7.2.5 Properties of Gm(t)
223(2)
7.3 The relaxation times
225(9)
7.3.1 Adiabatic T2
225(1)
7.3.2 Longitudinal relaxation
226(1)
7.3.3 Non-adiabatic T2
227(2)
7.3.4 Behaviour of the relaxation times
229(3)
7.3.5 The frequency shift
232(2)
7.4 Dipolar J(ω) and G(t)
234(12)
7.4.1 Rotation of a diatomic molecule
234(3)
7.4.2 Rotation of polyatomic molecules
237(1)
7.4.3 Relaxation by translational diffusion
238(4)
7.4.4 Low frequency behaviour
242(3)
7.4.5 High frequency limiting behaviour
245(1)
7.5 Some general results
246(8)
7.5.1 Scaling treatment of relaxation
246(2)
7.5.2 The T1 minimum
248(1)
7.5.3 Moments and transverse relaxation – revisited
249(3)
7.5.4 T1 sum rules and moments
252(2)
8 Some case studies
254(37)
8.1 Calcium fluoride lineshape
254(13)
8.1.1 Why calcium fluoride?
254(1)
8.1.2 Overview
255(2)
8.1.3 Moment calculations
257(1)
8.1.4 Abragam's approximation function
257(3)
8.1.5 Experimental measurements on calcium fluoride
260(2)
8.1.6 Theories of lineshape and relaxation
262(3)
8.1.7 Engelsberg and Lowe's data
265(1)
8.1.8 Postscript
266(1)
8.2 Glycerol
267(3)
8.2.1 Motivation
267(1)
8.2.2 Relaxation mechanisms
267(1)
8.2.3 Experimental measurements
267(1)
8.2.4 High and low frequencies
268(2)
8.2.5 The T1 minimum
270(1)
8.3 Exchange in solid helium-3
270(21)
8.3.1 Introduction
270(1)
8.3.2 Measurements of T2
271(2)
8.3.3 Zero point motion
273(1)
8.3.4 Exchange
273(5)
8.3.5 Relaxation
278(2)
8.3.6 Traditional treatment
280(1)
8.3.7 Spin diffusion
281(1)
8.3.8 Moment calculations
282(1)
8.3.9 The hydrodynamic limit
283(1)
8.3.10 Spin diffusion measurements
284(1)
8.3.11 Approximating the dipolar correlation functions
285(3)
8.3.12 Comparison with experiment
288(2)
8.3.13 Multiple spin exchange
290(1)
9 The density operator and applications
291(44)
9.1 Introduction to the density operator
291(13)
9.1.1 Motivation and definition
291(2)
9.1.2 Properties of the full density operator
293(2)
9.1.3 Equation of motion – von Neumann's equation
295(2)
9.1.4 The reduced density operator
297(1)
9.1.5 Physical meaning of the reduced density operator
298(1)
9.1.6 Properties of the reduced density operator
299(1)
9.1.7 Equation of motion for the reduced density operator
300(2)
9.1.8 Example: Larmor precession
302(2)
9.2 Thermal equilibrium
304(7)
9.2.1 The equilibrium density operator
304(2)
9.2.2 Ensemble average interpretation
306(1)
9.2.3 A paradox
306(2)
9.2.4 Partial resolution
308(1)
9.2.5 Macroscopic systems
308(2)
9.2.6 External equilibrium
310(1)
9.2.7 Spin systems
310(1)
9.3 Spin dynamics in solids
311(11)
9.3.1 The concept of spin temperature
311(1)
9.3.2 Changing the spin temperature
312(1)
9.3.3 The spin temperature hypothesis
313(1)
9.3.4 Energy and entropy
314(1)
9.3.5 Adiabatic demagnetisation
315(1)
9.3.6 Dipole fields
316(1)
9.3.7 High field case
317(1)
9.3.8 FID
318(2)
9.3.9 Provotorov equations
320(2)
9.4 In the rotating frame
322(6)
9.4.1 The basic ideas
322(1)
9.4.2 Relaxation in the rotating frame
323(4)
9.4.3 Spin locking
327(1)
9.4.4 Zero-time resolution (ZTR)
327(1)
9.5 Density operator theory of relaxation
328(7)
9.5.1 Historical survey
328(2)
9.5.2 Master equation for the density operator
330(1)
9.5.3 Cumulant expansion of the density operator
331(2)
9.5.4 An example
333(2)
10 NMR imaging 335(27)
10.1 Basic principles
335(4)
10.1.1 Spatial encoding
335(1)
10.1.2 Field gradients
336(1)
10.1.3 Viewing shadows
337(1)
10.1.4 Discussion
338(1)
10.1.5 Spatial resolution
339(1)
10.2 Imaging methods
339(7)
10.2.1 Classification of methods
339(1)
10.2.2 Sensitive point and sensitive line methods
340(1)
10.2.3 Shaped pulses – selecting a slice
341(3)
10.2.4 Back projection
344(1)
10.2.5 Iterative reconstruction
345(1)
10.3 Fourier reconstruction techniques
346(6)
10.3.1 Fourier imaging in two dimensions
346(1)
10.3.2 Fourier imaging in three dimensions
347(2)
10.3.3 Fourier zeugmatography
349(1)
10.3.4 Relaxation
350(1)
10.3.5 Spin warp imaging
351(1)
10.3.6 Two-dimensional spin-echo imaging
351(1)
10.4 Gradient echoes
352(4)
10.4.1 Creation of gradient echoes
352(1)
10.4.2 Two-dimensional gradient-echo imaging
353(1)
10.4.3 Three-dimensional gradient-echo imaging
354(1)
10.4.4 Echo planar imaging
355(1)
10.5 Imaging other parameters
356(6)
10.5.1 The effect of relaxation
356(1)
10.5.2 Imaging T2
357(1)
10.5.3 Imaging T1
358(2)
10.5.4 Imaging of diffusion
360(1)
10.5.5 Studying fluid flow
360(2)
Appendix A Fourier analysis 362(13)
A.1 The real Fourier transform
362(1)
A.2 The complex Fourier transform
363(2)
A.3 Fourier transform relations
365(3)
A.4 Symmetry properties of Fourier transforms
368(1)
A.5 Dirac's delta function
368(4)
A.6 Heaviside's step function
372(1)
A.7 Kramers—Kronig relations
373(2)
Appendix B Random functions 375(10)
B.1 Mean behaviour of fluctuations
375(3)
B.2 The autocorrelation function
378(2)
B.3 A paradox
380(1)
B.4 The Wiener—Kintchine Theorem
380(2)
B.5 Quantum variables
382(1)
B.6 Thermal equilibrium and stationarity
383(2)
Appendix C Interaction picture 385(4)
C.1 Heisenberg and Schriidinger pictures
385(1)
C.2 Interaction picture
386(1)
C.3 General case
387(2)
Appendix D Magnetic fields and canonical momentum 389(3)
D.1 The problem
389(1)
D.2 Change of reference frame
389(2)
D.3 Canonical momentum
391(1)
Appendix E Alternative classical treatment of relaxation 392(10)
E.1 Introduction
392(1)
E.2 Equations of motion
392(1)
E.3 Adiabatic T2
393(3)
E.4 Treatment of T1
396(2)
E.5 Non-adiabatic T2
398(2)
E.6 Spectral densities
400(2)
Appendix F Gm(t) for rotationally invariant systems 402(2)
F.1 Introduction
402(1)
F.2 Rotation of spherical harmonics
402(1)
F.3 Simplification
403(1)
Appendix G P(Ω, Ω0, t) for rotational diffusion 404(3)
G.1 Rotational diffusion
404(1)
G.2 General solution
404(1)
G.3 Particular solution
405(2)
Problems 407(14)
References 421(6)
Index 427

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program