did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780521803885

Nutritional Biochemistry of the Vitamins

by
  • ISBN13:

    9780521803885

  • ISBN10:

    0521803888

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2003-09-18
  • Publisher: Cambridge University Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $161.00 Save up to $59.57
  • Rent Book $101.43
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    SPECIAL ORDER: 1-2 WEEKS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

The vitamins are a chemically disparate group of compounds whose only common feature is that they are dietary essentials that are required in small amounts for the normal functioning of the body and maintenance of metabolic integrity. Metabolically they have diverse function, as coenzymes, hormones, antioxidants, mediators of cell signaling and regulators of cell and tissue growth and differentiation. This book, first published in 2003, explores the known biochemical functions of the vitamins, the extent to which we can explain the effects of deficiency or excess and the scientific basis for reference intakes for the prevention of deficiency and promotion of optimum health and well-being. It also highlights areas where our knowledge is lacking and further research is required. It provides a compact and authoritative reference volume of value to students and specialists alike in the field of nutritional biochemistry, and indeed all who are concerned with vitamin nutrition, deficiency and metabolism.

Table of Contents

List of Figures xvii
List of Tables xxi
Preface xxiii
1 The Vitamins 1(29)
1.1 Definition and Nomenclature of the Vitamins
2(8)
1.1.1 Methods of Analysis and Units of Activity
6(2)
1.1.2 Biological Availability
8(2)
1.2 Vitamin Requirements and Reference Intakes
10(20)
1.2.1 Criteria of Vitamin Adequacy and the Stages of Development of Deficiency
10(2)
1.2.2 Assessment of Vitamin Nutritional Status
12(5)
1.2.3 Determination of Requirements
17(2)
1.2.3.1 Population Studies of Intake
17(1)
1.2.3.2 Depletion/Repletion Studies
18(1)
1.2.3.3 Replacement of Metabolic Losses
18(1)
1.2.3.4 Studies in Patients Maintained on Total Parenteral Nutrition
19(1)
1.2.4 Reference Intakes of Vitamins
19(12)
1.2.4.1 Adequate Intake
23(1)
1.2.4.2 Reference Intakes for Infants and Children
23(1)
1.2.4.3 Tolerable Upper Levels of Intake
24(3)
1.2.4.4 Reference Intake Figures for Food Labeling
27(3)
2 Vitamin A: Retinoids and Carotenoids 30(47)
2.1 Vitamin A Vitamers and Units of Activity
31(4)
2.1.1 Retinoids
31(2)
2.1.2 Carotenoids
33(2)
2.1.3 International Units and Retinol Equivalents
35(1)
2.2 Absorption and Metabolism of Vitamin A and Carotenoids
35(14)
2.2.1 Absorption and Metabolism of Retinol and Retinoic Acid
35(5)
2.2.1.1 Liver Storage and Release of Retinol
36(2)
2.2.1.2 Metabolism of Retinoic Acid
38(1)
2.2.1.3 Retinoyl Glucuronide and Other Metabolites
39(1)
2.2.2 Absorption and Metabolism of Carotenoids
40(5)
2.2.2.1 Carotene Dioxygenase
41(1)
2.2.2.2 Limited Activity of Carotene Dioxygenase
42(1)
2.2.2.3 The Reaction Specificity of Carotene Dioxygenase
43(2)
2.2.3 Plasma Retinol Binding Protein (RBP)
45(2)
2.2.4 Cellular Retinoid Binding Proteins CRBPs and CRABPs
47(2)
2.3 Metabolic Functions of Vitamin A
49(12)
2.3.1 Retinol and Retinaldehyde in the Visual Cycle
49(5)
2.3.2 Genomic Actions of Retinoic Acid
54(4)
2.3.2.1 Retinoid Receptors and Response Elements
55(3)
2.3.3 Nongenomic Actions of Retinoids
58(3)
2.3.3.1 Retinoylation of Proteins
58(2)
2.3.3.2 Retinoids in Transmembrane Signaling
60(1)
2.4 Vitamin A Deficiency (Xerophthalmia)
61(5)
2.4.1 Assessment of Vitamin A Nutritional Status
64(2)
2.4.1.1 Plasma Concentrations of Retinol and β-Carotene
64(1)
2.4.1.2 Plasma Retinol Binding Protein
65(1)
2.4.1.3 The Relative Dose Response (RDR) Test
66(1)
2.4.1.4 Conjunctival Impression Cytology
66(1)
2.5 Vitamin A Requirements and Reference Intakes
66(11)
2.5.1 Toxicity of Vitamin A
68(3)
2.5.1.1 Teratogenicity of Retinoids
70(1)
2.5.2 Pharmacological Uses of Vitamin A, Retinoids, and Carotenoids
71(8)
2.5.2.1 Retinoids in Cancer Prevention and Treatment
71(1)
2.5.2.2 Retinoids in Dermatology
72(1)
2.5.2.3 Carotene
72(5)
3 Vitamin D 77(32)
3.1 Vitamin D Vitamers, Nomenclature, and Units of Activity
78(1)
3.2 Metabolism of Vitamin D
79(10)
3.2.1 Photosynthesis of Cholecalciferol in the Skin
80(2)
3.2.2 Dietary Vitamin D
82(1)
3.2.3 25-Hydroxylation of Cholecalciferol
83(2)
3.2.4 Calcidiol la-Hydroxylase
85(1)
3.2.5 Calcidiol 24-Hydroxylase
85(1)
3.2.6 Inactivation and Excretion of Calcitriol
86(1)
3.2.7 Plasma Vitamin D Binding Protein (Gc-Globulin)
87(1)
3.2.8 Regulation of Vitamin D Metabolism
87(2)
3.2.8.1 Calcitriol
88(1)
3.2.8.2 Parathyroid Hormone
88(1)
3.2.8.3 Calcitonin
88(1)
3.2.8.4 Plasma Concentrations of Calcium and Phosphate
89(1)
3.3 Metabolic Functions of Vitamin D
89(9)
3.3.1 Nuclear Vitamin D Receptors
91(1)
3.3.2 Nongenomic Responses to Vitamin D
92(1)
3.3.3 Stimulation of Intestinal Calcium and Phosphate Absorption
93(1)
3.3.3.1 Induction of Calbindin-D
93(1)
3.3.4 Stimulation of Renal Calcium Reabsorption
94(1)
3.3.5 The Role of Calcitriol in Bone Metabolism
94(2)
3.3.6 Cell Differentiation, Proliferation, and Apoptosis
96(1)
3.3.7 Other Functions of Calcitriol
97(1)
3.3.7.1 Endocrine Glands
98(1)
3.3.7.2 The Immune System
98(1)
3.4 Vitamin D Deficiency- Rickets and Osteomalacia
98(5)
3.4.1 Nonnutritional Rickets and Osteomalacia
99(1)
3.4.2 Vitamin D-Resistant Rickets
100(1)
3.4.3 Osteoporosis
101(3)
3.4.3.1 Glucocorticoid-Induced Osteoporosis
102(1)
3.5 Assessment of Vitamin D Status
103(1)
3.6 Requirements and Reference Intakes
104(5)
3.6.1 Toxicity of Vitamin D
105(1)
3.6.2 Pharmacological Uses of Vitamin D
106(3)
4 Vitamin E: Tocopherols and Tocotrienols 109(22)
4.1 Vitamin E Vitamers and Units of Activity
109(4)
4.2 Metabolism of Vitamin E
113(2)
4.3 Metabolic Functions of Vitamin E
115(7)
4.3.1 Antioxidant Functions of Vitamin E
116(4)
4.3.1.1 Prooxidant Actions of Vitamin E
118(1)
4.3.1.2 Reaction of Tocopherol with Peroxynitrite
119(1)
4.3.2 Nutritional Interactions Between Selenium and Vitamin E
120(1)
4.3.3 Functions of Vitamin E in Cell Signaling
121(1)
4.4 Vitamin E Deficiency
122(3)
4.4.1 Vitamin E Deficiency in Experimental Animals
122(3)
4.4.2 Human Vitamin E Deficiency
125(1)
4.5 Assessment of Vitamin E Nutritional Status
125(2)
4.6 Requirements and Reference Intakes
127(4)
4.6.1 Upper Levels of Intake
128(1)
4.6.2 Pharmacological Uses of Vitamin E
128(5)
4.6.2.1 Vitamin E and Cancer
129(1)
4.6.2.2 Vitamin E and Cardiovascular Disease
129(1)
4.6.2.3 Vitamin E and Cataracts
129(1)
4.6.2.4 Vitamin E and Neurodegenerative Diseases
129(2)
5 Vitamin K 131(17)
5.1 Vitamin K Vitamers
132(1)
5.2 Metabolism of Vitamin K
133(2)
5.2.1 Bacterial Biosynthesis of Menaquinones
135(1)
5.3 The Metabolic Functions of Vitamin K
135(7)
5.3.1 The Vitamin K-Dependent Carboxylase
136(3)
5.3.2 Vitamin K-Dependent Proteins in Blood Clotting
139(2)
5.3.3 Osteocalcin and Matrix Gla Protein
141(1)
5.3.4 Vitamin K-Dependent Proteins in Cell Signaling - Gash
142(1)
5.4 Vitamin K Deficiency
142(1)
5.4.1 Vitamin K Deficiency Bleeding in Infancy
143(1)
5.5 Assessment of Vitamin K Nutritional Status
143(2)
5.6 Vitamin K Requirements and Reference Intakes
145(3)
5.6.1 Upper Levels of Intake
145(1)
5.6.2 Pharmacological Uses of Vitamin K
146(2)
6 Vitamin B, - Thiamin 148(24)
6.1 Thiamin Vitamers and Antagonists
148(2)
6.2 Metabolism of Thiamin
150(3)
6.2.1 Biosynthesis of Thiamin
153(1)
6.3 Metabolic Functions of Thiamin
153(8)
6.3.1 Thiamin Diphosphate in the Oxidative Decarboxylation of Oxoacids
154(5)
6.3.1.1 Regulation of Pyruvate Dehydrogenase Activity
155(1)
6.3.1.2 Thiamin-Responsive Pyruvate Dehydrogenase Deficiency
156(1)
6.3.1.3 2-Oxoglutarate Dehydrogenase and the y-Aminobutyric Acid (GABA) Shunt
156(2)
6.3.1.4 Branched-Chain Oxo-acid Decarboxylase and Maple Syrup Urine Disease
158(1)
6.3.2 Transketolase
159(1)
6.3.3 The Neuronal Function of Thiamin Triphosphate
159(2)
6.4 Thiamin Deficiency
161(6)
6.4.1 Dry Beriberi
161(1)
6.4.2 Wet Beriberi
162(1)
6.4.3 Acute Pernicious (Fulminating) Beriberi - Shoshin Beriberi
162(1)
6.4.4 The Wernicke-Korsakoff Syndrome
163(1)
6.4.5 Effects of Thiamin Deficiency on Carbohydrate Metabolism
164(1)
6.4.6 Effects of Thiamin Deficiency on Neurotransmitters
165(1)
6.4.6.1 Acetylcholine
165(1)
6.4.6.2 5-Hydroxytryptamine
165(1)
6.4.7 Thiaminases and Thiamin Antagonists
166(1)
6.5 Assessment of Thiamin Nutritional Status
167(2)
6.5.1 Urinary Excretion of Thiamin and Thiochrome
167(1)
6.5.2 Blood Concentration of Thiamin
167(1)
6.5.3 Erythrocyte Transketolase Activation
168(1)
6.6 Thiamin Requirements and Reference Intakes
169(3)
6.6.1 Upper Levels of Thiamin Intake
169(1)
6.6.2 Pharmacological Uses of Thiamin
169(3)
7 Vitamin B2 - Riboflavin 172(28)
7.1 Riboflavin and the Flavin Coenzymes
172(3)
7.2 The Metabolism of Riboflavin
175(8)
7.2.1 Absorption, Tissue Uptake, and Coenzyme Synthesis
175(2)
7.2.2 Riboflavin Binding Protein
177(1)
7.2.3 Riboflavin Homeostasis
178(1)
7.2.4 The Effect of Thyroid Hormones on Riboflavin Metabolism
178(1)
7.2.5 Catabolism and Excretion of Riboflavin
179(2)
7.2.6 Biosynthesis of Riboflavin
181(2)
7.3 Metabolic Functions of Riboflavin
183(7)
7.3.1 The Flavin Coenzymes: FAD and Riboflavin Phosphate
183(1)
7.3.2 Single-Electron-Transferring Flavoproteins
184(1)
7.3.3 Two-Electron-Transferring Flavoprotein Dehydrogenases
185(1)
7.3.4 Nicotinamide Nucleotide Disulfide Oxidoreductases
185(1)
7.3.5 Flavin Oxidases
186(1)
7.3.6 NADPH Oxidase, the Respiratory Burst Oxidase
187(1)
7.3.7 Molybdenum-Containing Flavoprotein Hydroxylases
188(1)
7.3.8 Flavin Mixed-Function Oxidases (Hydroxylases)
189(1)
7.3.9 The Role of Riboflavin in the Cryptochromes
190(1)
7.4 Riboflavin Deficiency
190(6)
7.4.1 Impairment of Lipid Metabolism in Riboflavin Deficiency
191(1)
7.4.2 Resistance to Malaria in Riboflavin Deficiency
192(1)
7.4.3 Secondary Nutrient Deficiencies in Riboflavin Deficiency
193(1)
7.4.4 Iatrogenic Riboflavin Deficiency
194(2)
7.5 Assessment of Riboflavin Nutritional Status
196(1)
7.5.1 Urinary Excretion of Riboflavin
196(1)
7.5.2 Erythrocyte Glutathione Reductase (EGR) Activation Coefficient
197(1)
7.6 Riboflavin Requirements and Reference Intakes
197(1)
7.7 Pharmacological Uses of Riboflavin
198(2)
8 Niacin 200(32)
8.1 Niacin Vitamers and Nomenclature
201(2)
8.2 Niacin Metabolism
203(5)
8.2.1 Digestion and Absorption
203(1)
8.2.1.1 Unavailable Niacin in Cereals
203(1)
8.2.2 Synthesis of the Nicotinamide Nucleotide Coenzymes
203(2)
8.2.3 Catabolism of NADP)
205(1)
8.2.4 Urinary Excretion of Niacin Metabolites
206(2)
8.3 The Synthesis of Nicotinamide Nucleotides from Tryptophan
208(6)
8.3.1 Picolinate Carboxylase and Nonenzymic Cyclization to Quinolinic Acid
210(1)
8.3.2 Tryptophan Dioxygenase
211(1)
8.3.2.1 Saturation of Tryptophan Dioxygenase with Its Heme Cofactor
211(1)
8.3.2.2 Induction of Tryptophan Dioxygenase by Glucocorticoid Hormones
211(1)
8.3.2.3 Induction Tryptophan Dioxygenase by Glucagon
212(1)
8.3.2.4 Repression and Inhibition of Tryptophan Dioxygenase by Nicotinamide Nucleotides
212(1)
8.3.3 Kynurenine Hydroxylase and Kynureninase
212(2)
8.3.3.1 Kynurenine Hydroxylase
213(1)
8.3.3.2 Kynureninase
213(1)
8.4 Metabolic Functions of Niacin
214(7)
8.4.1 The Redox Function of NAD(P)
214(1)
8.4.1.1 Use of NAD(P) in Enzyme Assays
215(1)
8.4.2 ADP-Ribosyltransferases
215(2)
8.4.3 Poly(ADP-ribose) Polymerases
217(2)
8.4.4 cADP-Ribose and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)
219(2)
8.5 Pellagra - A Disease of Tryptophan and Niacin Deficiency
221(4)
8.5.1 Other Nutrient Deficiencies in the Etiology of Pellagra
222(1)
8.5.2 Possible Pellagragenic Toxins
223(1)
8.5.3 The Pellagragenic Effect of Excess Dietary Leucine
223(1)
8.5.4 Inborn Errors of Tryptophan Metabolism
224(1)
8.5.5 Carcinoid Syndrome
224(1)
8.5.6 Drug-Induced Pellagra
225(1)
8.6 Assessment of Niacin Nutritional Status
225(2)
8.6.1 Tissue and Whole Blood Concentrations of Nicotinamide Nucleotides
226(1)
8.6.2 Urinary Excretion of N1-Methyl Nicotinamide and Methyl Pyridone Carboxamide
226(1)
8.7 Niacin Requirements and Reference Intakes
227(2)
8.7.1 Upper Levels of Niacin Intake
228(1)
8.8 Pharmacological Uses of Niacin
229(3)
9 Vitamin B6 232(38)
9.1 Vitamin B6 Vitamers and Nomenclature
233(1)
9.2 Metabolism of Vitamin B6
234(2)
9.2.1 Muscle Pyridoxal Phosphate
236(1)
9.2.2 Biosynthesis of Vitamin B6
236(1)
9.3 Metabolic Functions of Vitamin B6
236(10)
9.3.1 Pyridoxal Phosphate in Amino Acid Metabolism
237(7)
9.3.1.1 a-Decarboxylation of Amino Acids
239(2)
9.3.1.2 Racemization of the Amino Acid Substrate
241(1)
9.3.1.3 Transamination of Amino Acids (Aminotransferase Reactions)
241(1)
9.3.1.4 Steps in the Transaminase Reaction
242(1)
9.3.1.5 Transamination Reactions of Other Pyridoxal Phosphate Enzymes
243(1)
9.3.1.6 Transamination and Oxidative Deamination Catalyzed by Dihydroxyphenylalanine (DOPA) Decarboxylase
243(1)
9.3.1.7 Side-Chain Elimination and Replacement Reactions
244(1)
9.3.2 The Role of Pyridoxal Phosphate in Glycogen Phosphorylase
244(1)
9.3.3 The Role of Pyridoxal Phosphate in Steroid Hormone Action and Gene Expression
245(1)
9.4 Vitamin B6 Deficiency
246(4)
9.4.1 Enzyme Responses to Vitamin B6 Deficiency
247(2)
9.4.2 Drug-Induced Vitamin B6 Deficiency
249(1)
9.4.3 Vitamin B6 Dependency Syndromes
250(1)
9.5 The Assessment of Vitamin B6 Nutritional Status
250(6)
9.5.1 Plasma Concentrations of Vitamin B6
251(1)
9.5.2 Urinary Excretion of Vitamin B6 and 4-Pyridoxác Acid
251(1)
9.5.3 Coenzyme Saturation of Transaminases
252(1)
9.5.4 The Tryptophan Load Test
252(3)
9.5.4.1 Artifacts in the Tryptophan Load Test Associated with Increased Tryptophan Dioxygenase Activity
253(1)
9.5.4.2 Estrogens and Apparent Vitamin B6 Nutritional Status
254(1)
9.5.5 The Methionine Load Test
255(1)
9.6 Vitamin B6 Requirements and Reference Intakes
256(5)
9.6.1 Vitamin B6 Requirements Estimated from Metabolic Turnover
256(1)
9.6.2 Vitamin B6 Requirements Estimated from Depletion! Repletion Studies
257(2)
9.6.3 Vitamin B6 Requirements of Infants
259(1)
9.6.4 Toxicity of Vitamin B6
259(2)
9.6.4.1 Upper Levels of Vitamin B6 Intake
260(1)
9.7 Pharmacological Uses of Vitamin B6
261(4)
9.7.1 Vitamin B6 and Hyperhomocysteinemia
261(1)
9.7.2 Vitamin B6 and the Premenstrual Syndrome
262(1)
9.7.3 Impaired Glucose Tolerance
262(1)
9.7.4 Vitamin B6 for Prevention of the Complications of Diabetes Mellitus
263(1)
9.7.5 Vitamin B6 for the Treatment of Depression
264(1)
9.7.6 Antihypertensive Actions of Vitamin B6
264(1)
9.8 Other Carbonyl Catalysts
265(5)
9.8.1 Pyruvoyl Enzymes
266(1)
9.8.2 Pyrroloquinoline Quinone (PQQ) and Tryptophan Tryptophylquinone (TTQ)
266(2)
9.8.3 Quinone Catalysts in Mammalian Enzymes
268(2)
10 Folate and Other Pterins and Vitamin B12 270(54)
10.1 Folate Vitamers and Dietary Folate Equivalents
271(1)
10.1.1 Dietary Folate Equivalents
271(2)
10.2 Metabolism of Folates
273(6)
10.2.1 Digestion and Absorption of Folates
273(1)
10.2.2 Tissue Uptake and Metabolism of Folate
274(2)
10.2.2.1 Poly-y-glutamylation of Folate
275(1)
10.2.3 Catabolism and Excretion of Folate
276(1)
10.2.4 Biosynthesis of Pterins
276(3)
10.3 Metabolic Functions of Folate
279(15)
10.3.1 Sources of Substituted Folates
279(4)
10.3.1.1 Serine Hydroxymethyltransferase
279(2)
10.3.1.2 Histidine Catabolism
281(2)
10.3.1.3 Other Sources of One-Carbon Substituted Folates
283(1)
10.3.2 Interconversion of Substituted Folates
283(3)
10.3.2.1 Methylene-Tetrahydrofolate Reductase
284(2)
10.3.2.2 Disposal of Surplus One-Carbon Fragments
286(1)
10.3.3 Utilization of One-Carbon Substituted Folates
286(3)
10.3.3.1 Thymidylate Synthetase and Dihydrofolate Reductase
287(1)
10.3.3.2 Dihydrofolate Reductase Inhibitors
288(1)
10.3.3.3 The dUMP Suppression Test
289(1)
10.3.4 The Role of Folate in Methionine Metabolism
289(5)
10.3.4.1 The Methyl Folate Trap Hypothesis
291(1)
10.3.4.2 Hyperhomocysteinemia and Cardiovascular Disease
292(2)
10.4 Tetrahydrobiopterin
294(3)
10.4.1 The Role of Tetrahydrobiopterin in Aromatic Amino Acid Hydroxylases
294(2)
10.4.2 The Role of Tetrahydrobiopterin in Nitric Oxide Synthase
296(1)
10.5 Molybdopterin
297(1)
10.6 Vitamin B12 Vitamers and Nomenclature
298(2)
10.7 Metabolism of Vitamin B12
300(3)
10.7.1 Digestion and Absorption of Vitamin B12
300(1)
10.7.2 Plasma Vitamin B12 Binding Proteins and Tissue Uptake
301(2)
10.7.3 Bacterial Biosynthesis of Vitamin B12
303(1)
10.8 Metabolic Functions of Vitamin B12
303(4)
10.8.1 Methionine Synthetase
304(1)
10.8.2 Methylmalonyl CoA Mutase
305(1)
10.8.3 Leucine Aminomutase
306(1)
10.9 Deficiency of Folic Acid and Vitamin B12
307(6)
10.9.1 Megaloblastic Anemia
308(1)
10.9.2 Pernicious Anemia
308(1)
10.9.3 Neurological Degeneration in Vitamin B12 Deficiency
309(1)
10.9.4 Folate Deficiency and Neural Tube Defects
310(1)
10.9.5 Folate Deficiency and Cancer Risk
311(1)
10.9.6 Drug-Induced Folate Deficiency
312(1)
10.9.7 Drug-Induced Vitamin B12 Deficiency
313(1)
10.10 Assessment of Folate and Vitamin B12 Nutritional Status
313(5)
10.10.1 Plasma and Erythrocyte Concentrations of Folate and Vitamin B12
314(1)
10.10.2 The Schilling Test for Vitamin B12 Absorption
315(1)
10.10.3 Methylmalonic Aciduria and Methylmalonic Acidemia
316(1)
10.10.4 Histidine Metabolism - the FIGLU Test
316(1)
10.10.5 The dUMP Suppression Test
317(1)
10.11 Folate and Vitamin B12 Requirements and Reference Intakes
318(3)
10.11.1 Folate Requirements
318(1)
10.11.2 Vitamin B12 Requirements
318(1)
10.11.3 Upper Levels of Folate Intake
319(2)
10.12 Pharmacological Uses of Folate and Vitamin B12
321(3)
11 Biotin (Vitamin H) 324(21)
11.1 Metabolism of Biotin
324(5)
11.1.1 Bacterial Synthesis of Biotin
327(2)
11.1.1.1 The Importance of Intestinal Bacterial Synthesis of Biotin
329(1)
11.2 The Metabolic Functions of Biotin
329(8)
11.2.1 The Role of Biotin in Carboxylation Reactions
330(2)
11.2.1.1 Acetyl CoA Carboxylase
330(1)
11.2.1.2 Pyruvate Carboxylase
331(1)
11.2.1.3 Propionyl CoA Carboxylase
331(1)
11.2.1.4 Methylcrotonyl CoA Carboxylase
332(1)
11.2.2 Holocarboxylase Synthetase
332(2)
11.2.2.1 Holocarboxylase Synthetase Deficiency
332(2)
11.2.3 Biotinidase
334(1)
11.2.3.1 Biotinidase Deficiency
335(1)
11.2.4 Enzyme Induction by Biotin
335(1)
11.2.5 Biotin in Regulation of the Cell Cycle
336(1)
11.3 Biotin Deficiency
337(3)
11.3.1 Metabolic Consequences of Biotin Deficiency
338(2)
11.3.1.1 Glucose Homeostasis in Biotin Deficiency
338(1)
11.3.1.2 Fatty Liver and Kidney Syndrome in Biotin-Deficient Chicks
338(1)
11.3.1.3 Cot Death
339(1)
11.3.2 Biotin Deficiency In Pregnancy
340(1)
11.4 Assessment of Biotin Nutritional Status
340(1)
11.5 Biotin Requirements
341(1)
11.6 Avidin
341(4)
12 Pantothenic Acid 345(12)
12.1 Pantothenic Acid Vitamers
345(1)
12.2 Metabolism of Pantothenic Acid
346(6)
12.2.1 The Formation of CoA from Pantothenic Acid
348(2)
12.2.1.1 Metabolic Control of CoA Synthesis
349(1)
12.2.2 Catabolism of CoA
350(1)
12.2.3 The Formation and Turnover of ACP
350(1)
12.2.4 Biosynthesis of Pantothenic Acid
351(1)
12.3 Metabolic Functions of Pantothenic Acid
352(1)
12.4 Pantothenic Acid Deficiency
353(2)
12.4.1 Pantothenic Acid Deficiency in Experimental Animals
353(1)
12.4.2 Human Pantothenic Acid Deficiency - The Burning Foot Syndrome
354(1)
12.5 Assessment of Pantothenic Acid Nutritional Status
355(1)
12.6 Pantothenic Acid Requirements
355(1)
12.7 Pharmacological Uses of Pantothenic Acid
356(1)
13 Vitamin C (Ascorbic Acid) 357(28)
13.1 Vitamin C Vitamers and Nomenclature
358(1)
13.1.1 Assay of Vitamin C
359(1)
13.2 Metabolism of Vitamin C
359(5)
13.2.1 Intestinal Absorption and Secretion of Vitamin C
361(1)
13.2.2 Tissue Uptake of Vitamin C
361(1)
13.2.3 Oxidation and Reduction of Ascorbate
362(1)
13.2.4 Metabolism and Excretion of Ascorbate
363(1)
13.3 Metabolic Functions of Vitamin C
364(8)
13.3.1 Dopamine β-Hydroxylase
365(1)
13.3.2 Peptidyl Glycine Hydroxylase (Peptide a-Amidase)
366(1)
13.3.3 2-Oxoglutarate-Linked Iron-Containing Hydroxylases
367(2)
13.3.4 Stimulation of Enzyme Activity by Ascorbate In Vitro
369(1)
13.3.5 The Role of Ascorbate in Iron Absorption and Metabolism
369(1)
13.3.6 Inhibition of Nitrosamine Formation by Ascorbate
370(1)
13.3.7 Pro- and Antioxidant Roles of Ascorbate
371(1)
13.3.7.1 Reduction of the Vitamin E Radical by Ascorbate
371(1)
13.3.8 Ascorbic Acid in Xenobiotic and Cholesterol Metabolism
371(1)
13.4 Vitamin C Deficiency - Scurvy
372(2)
13.4.1 Anemia in Scurvy
373(1)
13.5 Assessment of Vitamin C Status
374(2)
13.5.1 Urinary Excretion of Vitamin C and Saturation Testing
374(1)
13.5.2 Plasma and Leukocyte Concentrations of Ascorbate
374(2)
13.5.3 Markers of DNA Oxidative Damage
376(1)
13.6 Vitamin C Requirements and Reference Intakes
376(6)
13.6.1 The Minimum Requirement for Vitamin C
376(2)
13.6.2 Requirements Estimated from the Plasma and Leukocyte Concentrations of Ascorbate
378(1)
13.6.3 Requirements Estimated from Maintenance of the Body Pool of Ascorbate
378(1)
13.6.4 Higher Recommendations
379(1)
13.6.4.1 The Effect of Smoking on Vitamin C Requirements
380(1)
13.6.5 Safety and Upper Levels of Intake of Vitamin C
380(2)
13.6.5.1 Renal Stones
380(1)
13.6.5.2 False Results in Urine Glucose Testing
381(1)
13.6.5.3 Rebound Scurvy
381(1)
13.6.5.4 Ascorbate and Iron Overload
382(1)
13.7 Pharmacological Uses of Vitamin C
382(3)
13.7.1 Vitamin C in Cancer Prevention and Therapy
382(1)
13.7.2 Vitamin C in Cardiovascular Disease
383(1)
13.7.3 Vitamin C and the Common Cold
383(2)
14 Marginal Compounds and Phytonutrients 385(24)
14.1 Carnitine
385(4)
14.1.1 Biosynthesis and Metabolism of Carnitine
386(2)
14.1.2 The Possible Essentiality of Carnitine
388(1)
14.1.3 Carnitine as an Ergogenic Aid
388(1)
14.2 Choline
389(3)
14.2.1 Biosynthesis and Metabolism of Choline
389(2)
14.2.2 The Possible Essentiality of Choline
391(1)
14.3 Creatine
392(1)
14.4 Inositol
393(3)
14.4.1 Phosphatidylinositol in Transmembrane Signaling
394(1)
14.4.2 The Possible Essentiality of Inositol
394(2)
14.5 Taurine
396(4)
14.5.1 Biosynthesis of Taurine
396(2)
14.5.2 Metabolic Functions of Taurine
398(1)
14.5.2.1 Taurine Conjugation of Bile Acids
398(1)
14.5.2.2 Taurine in the Central Nervous System
398(1)
14.5.2.3 Taurine and Heart Muscle
399(1)
14.5.3 The Possible Essentiality of Taurine
399(1)
14.6 Ubiquinone (Coenzyme Q)
400(1)
14.7 Phytonutrients: Potentially Protective Compounds in Plant Foods
401(8)
14.7.1 Allyl Sulfur Compounds
401(1)
14.7.2 Flavonoids and Polyphenols
402(1)
14.7.3 Glucosinolates
403(1)
14.7.4 Phytoestrogens
404(5)
Bibliography 409(54)
Index 463

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program