rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780817632311

Parametric and Semiparametric Models With Applications to Reliability, Survival Analysis, and Quality of Life

by ; ; ;
  • ISBN13:

    9780817632311

  • ISBN10:

    081763231X

  • Format: Hardcover
  • Copyright: 2004-06-30
  • Publisher: Birkhauser

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

List Price: $219.99 Save up to $180.75
  • Rent Book $156.74
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    SPECIAL ORDER: 1-2 WEEKS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Parametric and Semiparametric Models With Applications to Reliability, Survival Analysis, and Quality of Life [ISBN: 9780817632311] for the semester, quarter, and short term or search our site for other textbooks by Nikulin, M. S.; Balakrishnan, N.; Mesbah, M.; Limnios, N.. Renting a textbook can save you up to 90% from the cost of buying.

Summary

Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis and related fields. Specific topics covered include: * non-parametric estimation of lifetimes of subjects exposed to radiation * statistical analysis of simultaneous degradation-mortality data with covariates of the aged * estimation of maintenance efficiency in semiparametric imperfect repair models * cancer prognosis using survival forests * short-term health problems related to air pollution: analysis using semiparametric generalized additive models * parametric models in accelerated life testing and fuzzy data * semiparametric models in the studies of aging and longevity This book will be of use as a reference text for general statisticians, theoreticians, graduate students, reliability engineers, health researchers, and biostatisticians working in applied probability and statistics.

Table of Contents

Preface xix
Catherine Huber-Carol: Career and Accomplishments xxi
Contributors xxix
List of Tables xxxv
List of Figures xxxix
PART I: COX MODELS AND ANALYSES
1 Estimation in Partly Parametric Additive Cox Models
3(10)
H. Läuter
1.1 Introduction
3(2)
1.2 Types of Regression Functions
5(1)
1.2.1 Linear models
5(1)
1.2.2 Nonlinear models
5(1)
1.3 Random Covariates and Partial Likelihood
6(3)
1.3.1 Linear case
8(1)
1.4 Fix Covariates and Partial Likelihood
9(1)
1.5 Least Squares Estimation
9(3)
References
12(1)
2 Nonparametric Maximum Likelihood Estimation in the Proportional Hazards Model with Covariate Measurement Error
13(14)
J.-F. Dupuy
2.1 Introduction
13(2)
2.2 Nonparametric Maximum Likelihood Estimation
15(2)
2.3 Existence of the NPML Estimators
17(3)
2.4 Consistency of the NPML Estimators
20(2)
2.5 Discussion
22(1)
References
22(5)
3 Diagnostics for Cox's Proportional Hazards Model
27(14)
C. Caroni
3.1 Introduction
27(2)
3.2 Schoenfeld Residuals
29(1)
3.3 Martingale Residuals
30(2)
3.4 Using Residuals to Examine the PH Assumption
32(1)
3.5 Influence
33(1)
3.6 Added Variable Plots
34(2)
3.7 Conclusions
36(1)
References
36(5)
PART II: DEGRADATION MODELS AND ANALYSES
4 Semiparametric Analysis of Degradation and Failure Time Data with Covariates
41(24)
V. Bagdonavicius and Al. Nikulin
4.1 Introduction
41(1)
4.2 Modeling the Degradation-Failu e Time Process
42(2)
4.3 Survival and Degradation Characteristics
44(2)
4.4 Modeling Covariate Effects on Degradation and Survival
46(3)
4.5 Semiparametric Estimation of Degradation and Survival Characteristics: Models Without Covariates
49(9)
4.6 Semiparametric Estimation of Degradation and Survival Characteristics: Models with Covariates
58(4)
References
62(3)
5 On a Degradation-Failure Model for Repairable Items
65(16)
A. Lehmann
5.1 Introduction
65(1)
5.2 Types of Covariates
66(3)
5.3 Degradation-Failure Model for Non-Repairable Items
69(4)
5.4 Degradation-Failure Model for Repairable Items
73(2)
5.5 Maximum Likelihood Estimation
75(2)
5.6 Semiparametric Estimation
77(2)
5.7 Concluding Remarks
79(1)
References
79(2)
6 Comparison of Parametric and Semiparametric Estimates in a Degradation Model with Covariate and Traumatic Censoring
81(18)
V. Couallier
6.1 The Degradation Model
82(1)
6.2 Some Traumatic Events Censure the Degradation Paths
83(1)
6.3 The Covariates
84(1)
6.4 The Data and the Estimation
84(5)
6.4.1 Estimation in the parametric framework
86(1)
6.4.2 Estimation in the semipa.rametric framework
87(2)
6.5 Comparison and Analysis by Monte Carlo Simulations
89(5)
6.5.1 Computational aspects
89(1)
6.5.2 The simulations
90(4)
6.6 The Path Model with Noise
94(1)
References
95(4)
PART III: ACCELERATED FAILURE TIME MODELS AND ANALYSES
7 Accelerated Life Testing, Fuzzy Information and Generalized Probability
99(8)
R. Viertl
7.1 Introduction
99(1)
7.2 Fuzzy Numbers, Fuzzy Vectors and Fuzzy Valued Functions
100(2)
7.3 Semiparametric ALT and Bayes' Theorem
102(1)
7.4 Fuzzy Data and Generalized Bayes' Theorem
102(2)
7.5 Conclusion
104(1)
References
104(3)
8 Asymptotic Theory in Rank Estimation for AFT Model Under Fixed Censorship
107(14)
Z. Jin and Z. Ying
8.1 Introduction
107(2)
8.2 Main Results
109(3)
8.2.1 Notation and assumptions
109(2)
8.2.2 Main results
111(1)
8.3 Proof of Main Results
112(6)
8.3.1 Preliminaries
112(5)
8.3.2 Proofs of Theorems 8.2.1 and 8.2.2
117(1)
8.4 Remarks
118(1)
References
119(2)
9 An Example of Optimal Design iN Accelerated Experiments
121
L. Gerville-Reache
9.1 Introduction
121(1)
9.2 Semiparametric Estimation
122(4)
9.3 Numerical Simulations
126(3)
9.4 Conclusion
129(1)
References
130(5)
PART IV: AGING PROPERTIES AND ANALYSES
10 Aspects of Multivariate Aging in Exchangeable Frailty Models
135(32)
F. Spizzichino
10.1 Introduction
135(1)
10.2 Exchangeable Frailty Models
136(4)
10.3 Multivariate Aging For Exchangeable Lifetimes
140(3)
10.4 Exchangeable Frailties and Multivariate Aging
143(4)
References
147(2)
11 Semiparametric Models in the Studies of Aging and Longevity
149(9)
A.I. Yashin
11.1 Introduction
149(2)
11.2 The Shared Gannna-frailty Model
151(1)
11.3 Identifiability and Confounding
152(1)
11.4 The Positive-stable-frailty Models
153(1)
11.5 The Correlated Gamma frailty Model
154(1)
11.6 Other Correlated Frailty Models
155(1)
11.7 The Underlying Hazard
156(1)
11.8 An Advantage for Genetic Studies
157(1)
11.9 Dependence Between Observed and Hidden Covariates
158(1)
11.10 The Identifiability of the Dependent Competing Risk Model for Twins
159(1)
11.11 Discussion
160(1)
References
161(6)
PART V: ANALYSES OF CENSORED AND TRUNCATED DATA
12 Semipararnetric Transformation Models for Arbitrarily Censored and Truncated Data
167(54)
C. Huber-Carol and F. Vonta
12.1 Introduction
167(2)
12.2 Nonparametric Estimation of the Survival Function
169(2)
12.3 Semiparametric Transformation Models and the Likelihood Formulation
171(3)
12.4 Real Data Example
174(1)
References
175(2)
13 EM Algorithm for Type-II Right Censored Bivariate Normal Data
177(1)
N. Balakrishnan and J.-A. Kim
13.1 Introduction
177(2)
13.2 Conditional Distributions and Expectations of Censored Data
179(1)
13.3 EM Algorithm
180(3)
13.4 Asymptotic Variances and Covariances
183(2)
13.5 Illustrative Example
185(2)
13.6 Simulation Results
187(1)
13.7 Probability Coverages
187(1)
Appendix
188(2)
References
190(21)
14 Statistical Estimation Based on Interval Censored Data
211(1)
M.S. Tikhov
14.1 Introduction
211(2)
14.2 Results
213(3)
14.3 Examples
216(1)
References
217(4)
PART VI: REGRESSION METHODS AND APPLICATIONS
15 The Covariate Order Method for Nonparametric Exponential Regression and Some Applications in Other Lifetime Models
221(32)
J.T. Kvaløy and B.H. Lindquist
15.1 Introduction
221(1)
15.2 The Covariate Order Method for Exponential Regression
222(6)
15.2.1 Method description and main theoretical results
223(2)
15.2.2 Smoothing details
225(1)
15.2.3 Several covariates
226(1)
15.2.4 Testing for covariate effect
227(1)
15.2.5 Example: Cardiac arrest versus air temperature
227(1)
15.3 Applications in Cox Regression
228(3)
15.3.1 Model checking and model fitting in classical Cox regression
228(1)
15.3.2 Example: PBC data
229(2)
15.4 Proofs
231(5)
15.4.1 Proof of Theorem 15.2.1
231(3)
15.4.2 Proof of Lemma 15.2.1
234(1)
15.4.3 Proof of Theorem 15.2.2
234(2)
15.5 Conclusions
236(1)
References
236(3)
16 Effect of Ignoring Heterogeneity in Hazards Regression
239(1)
H-D. I. Wu,
16.1 Introduction
239(1)
16.2 Calculation of Bias
240(2)
16.3 Numerical Study
242(3)
16.3.1 Examples
242(2)
16.3.2 Direction of bias
244(1)
16.4 The Stratified PH Analysis Under the HHR Model
245(3)
16.5 Discussion
248(1)
References
249(4)
PART VII: TIME SERIES ANALYSIS
17 An Introduction to Efficient Estimation for Semiparametric Time Series
253(20)
P.E. Greenwood, U.U. Müller and W. Wefelmeter
17.1 Introduction
253(1)
17.2 Nonparametric Efficiency of the Least Squares Estimator
254(3)
17.3 Linear Autoregression
257(4)
17.4 Independent Innovations
261(4)
References
265(8)
PART VIII: INFERENTIAL ANALYSIS
18 Distance-based Multivariate Two Sample Tests
273(60)
C.M. Cuadras and J. Fortiana
18.1 Introduction
273(1)
18.2 Some Geometrical Concepts
274(3)
18.3 DB Approach in Comparing Two Populations
277(1)
18.4 The Generalized T2 Test
278(1)
18.5 The Proximity Function Test
279(3)
18.5.1 Linear and quadratic discrimination
279(1)
18.5.2 Marginal parametrization
280(1)
18.5.3 Non-parametric tests with proximity functions
281(1)
18.6 Bootstrapping Distances
282(1)
18.7 Comparing Variabilities
283(1)
18.8 Real Data Examples
283(2)
18.9 Conclusions
285(3)
References
288(3)
19 Empirical Likelihood in Nonparametric and Semiparametric Models
291(1)
P. Bertail
19.1 Introduction
291(1)
19.2 Empirical Likelihood for Hadamard Differentiable Functionals
292(6)
19.2.1 Definitions
292(1)
19.2.2 Some convex duality arguments
293(2)
19.2.3 Extension to Hadamard differentiable functionals
295(3)
19.3 Extensions to Some Semi-parametric Problems
298(2)
19.4 Some Extensions to Bias Sampling Problems
300(4)
References
304(3)
20 Goodness of Fit Tests of L2-Type
307(1)
H. Liero
20.1 Introduction
307(1)
20.2 Tests for Densities
308(7)
20.2.1 Testing whether a density has a parametric form
308(4)
20.2.2 Testing independence
312(3)
20.3 Tests for Sparse Data Sets
315(5)
20.3.1 Testing cell probabilities in sparse multinomial data
315(3)
20.3.2 Testing independence in sparse Contingency tables
318(2)
20.4 Parametric Versus Nonparametric Regression Fit
320(1)
20.5 Testing Homoscedasticity in. Nonparametric Regression
321(2)
20.6 Testing the Hazard Function Under Censoring
323(6)
20.6.1 Survival model without covariates
323(3)
20.6.2 Survival model with fixed covariates
326(3)
References
329(4)
PART IX: MULIICENTRE STUDIES
21 Asymptotic Properties of the CRT Estimators for Multicentre Studies
333(16)
V.V. Anisimov and V.V. Fedorov
21.1 Introduction
333(1)
21.2 Estimator of CRT
334(1)
21.3 Asymptotic Properties of CRT Estimator
335(7)
21.3.1 Deterministic setting
336(4)
21.3.2 Random setting
340(2)
21.4 Approximation of Variance of the Estimator
342(1)
21.5 Conclusions
343(1)
References
343(6)
PART X: QUALITY OF LIFE STUDIES
22 HRQoL and Concomitant Adjusted Mean Residual Life Analysis
349(36)
P.K. Sen
22.1 Introduction
349(1)
22.2 DMRL Characterizations
350(4)
22.3 QLAMRL: Statistical Perspectives
354(2)
22.4 Matrix-Valued Counting Process in HRQoL
356(3)
22.5 Stopped Counting Processes
359(2)
References
361(2)
23 Semiparametric Approach to the Multivariate Mixed Rasch Model
363(1)
M.-L. Feddag and M. Mesbah
23.1 Introduction
363(3)
23.2 Model Description
366(1)
23.3 An Overview of Estimating Methods in GLMMs
367(2)
23.4 GEE to the Multivariate Mixed Basch Model
369(7)
23.4.1 Approximations of marginal likelihood and joint moments
369(3)
23.4.2 Estimation of the parameters
372(3)
23.4.3 Asymptotic properties
375(1)
23.5 Illustrations
376(3)
23.5.1 Simulations
376(1)
23.5.2 Example
377(2)
23.6 Conclusions
379(1)
References
380(5)
PART XI: BREAST CANCER STUDIES
24 Breast Cancer Prognosis Using Survival Forests
385(34)
T.M. Hoáng and V.L. Parsons
24.1 Introduction
385(1)
24.2 Survival Forests
386(1)
24.3 Choosing and Timing SF Parameters
387(1)
24.4 Assessing the Fit by SF
388(2)
24.5 Sample Runs Through SF
390(1)
24.6 Using SF for Cancer Prognosis
391(6)
References
397(2)
25 Semiparametric Versus Parametric Regression Analysis Based on the Bounded Cumulative Hazard Model: An Application to Breast Cancer Recurrence
399(1)
K.M. Boucher. B. Asselain, A.D. Tsodikov and A.Y. Yakovlev
25.1 Introduction
399(2)
25.2 BCH Regression Models
401(5)
25.2.1 Mixture models and generalizations
401(3)
25.2.2 An EM-based estimation procedure for the PH mixture model
404(2)
25.3 Analysis of Data from the Curie Institute
406(4)
25.4 Discussion
410(3)
References
413(6)
PART XII: INFERENCE FOR PROCESSES
26 Estimation of Analytic Spectral Density of Gaussian Stationary Processes
419(100)
I. Ibragimov
26.1 Introduction
419(2)
26.2 Proof of Theorem 26.1.1. Upper Bounds
421(7)
26.3 Lower Bounds
428(8)
26.4 Processes with Continuous Time
436(6)
References
442(3)
27 Sub-optimal Estimation of an Unknown Function from Stationary Noisy Data
445(1)
V. Solev
27.1 Statistical Problem
445(2)
27.2 Process with Stationary Increments
447(1)
27.3 Linear Estimators
448(1)
27.4 Pseudo-periodic Functions
449(1)
27.5 Parametric Set L*
450(2)
27.6 Example
452(6)
27.6.1 Hyperrectangle
453(1)
27.6.2 The one-dimensional parametric set
454(3)
27.6.3 General case
457(1)
27.7 Main Result
458(1)
References
459(2)
28 On Parameter Estimation by Contaminated Observations of Ergodic Diffusion Processes
461(1)
Yu. A. Kutoyants
28.1 Introduction
461(2)
28.2 Regular Case
463(2)
28.3 Nonregular Cases
465(7)
28.3.1 Change-point estimation
465(5)
28.3.2 Cusp estimation
470(2)
References
472(1)
29 On Parameter Estimation for a Position-Dependent Marking of a Doubly Stochastic Poisson Process
473(1)
H. Wendt and W. Kahle
29.1 Introduction
473(1)
29.2 A Cumulative Damage Process
474(3)
29.3 Maximum Likelihood Estimations
477(4)
29.4 The Large Sample Case
481(4)
References
485(2)
30 Discrete Time Semi-Markov Processes for Reliability and Survival Analysis - A Nonparametric Estimation Approach
487(1)
V. Barbu and N. Limnios
30.1 Introduction
487(1)
30.2 Discrete Time Semi-Markov Processes: Definitions and Basic Properties
488(5)
30.3 Estimation of Survival Function and Asymptotic Properties
493(3)
30.4 Proof
496(2)
30.5 Numerical Example
498(2)
References
500(3)
31 Non-parametric Estimation on Lifetimes of Subjects Exposed to Radiation from a Semi-Markov Process
503(1)
A-L. Afchain
31.1 Experimental Context and Its Modelling
503(2)
31.2 Preliminaries
505(1)
31.3 Semi-Markov Kernel Estimator
506(3)
31.4 Survival Function Estimator
509(2)
31.5 Numerical Application
511(1)
31.5.1 Raw data. set
511(1)
31.5.2 Results
512(1)
31.6 Conclusion
512(2)
References
514(5)
PART XIII: PROBABILITY THEORY AND APPLICATIONS
32 An Extension of Levy's Formula to Weighted Wiener Processes
519(34)
P. Deheuvels
32.1 Introduction and Results
519(3)
32.2 Proofs
522(4)
32.3 An Alternative Proof of Theorem 32.1.1 Based upon a Result of Biane and Yor (1987)
526(2)
References
528(5)
33 Sur l'Inégalité de Concentration de Doeblin-Lévy, Rogozin-Kesten
533(1)
J. Bretagnolle
33.1 Introduction et résultat principal
533(3)
33.2 Notations et premieres réductions
536(2)
33.3 Présentation de la preuve
538(1)
33.4 Preuve de l'assertion (33.7)
539(11)
33.5 Appendice 544 References
550(3)
Index 553

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program