rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9788847007512

Partial Differential Equations in Action

by
  • ISBN13:

    9788847007512

  • ISBN10:

    8847007518

  • Edition: 1st
  • Format: Paperback
  • Copyright: 2008-02-13
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $69.95

Summary

This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines. The main purpose is on the one hand to train students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other hand to give them a solid theoretical background for numerical methods. At the end of each chapter, a number of exercises at different level of complexity is included

Table of Contents

Prefacep. v
Introductionp. 1
Mathematical Modellingp. 1
Partial Differential Equationsp. 2
Well Posed Problemsp. 5
Basic Notations and Factsp. 7
Smooth and Lipschitz Domainsp. 10
Integration by Parts Formulasp. 11
Diffusionp. 13
The Diffusion Equationp. 13
Introductionp. 13
The conduction of heatp. 14
Well posed problems (n = 1)p. 16
A solution by separation of variablesp. 19
Problems in dimension n > 1p. 27
Uniquenessp. 30
Integral methodp. 30
Maximum principlesp. 31
The Fundamental Solutionp. 34
Invariant transformationsp. 34
Fundamental solution (n = 1)p. 36
The Dirac distributionp. 39
Fundamental solution (n > 1)p. 42
Symmetric Random Walk (n = 1)p. 43
Preliminary computationsp. 44
The limit transition probabilityp. 47
From random walk to Brownian motionp. 49
Diffusion, Drift and Reactionp. 52
Random walk with driftp. 52
Pollution in a channelp. 54
Random walk with drift and reactionp. 57
Multidimensional Random Walkp. 58
The symmetric casep. 58
Walks with drift and reactionp. 62
An Example of Reaction-Diffusion (n = 3)p. 62
The Global Cauchy Problem (n = 1)p. 68
The homogeneous casep. 68
Existence of a solutionp. 69
The non homogeneous case. Duhamel's methodp. 71
Maximum principles and uniquenessp. 74
An Application to Financep. 77
European optionsp. 77
An evolution model for the price Sp. 77
The Black-Scholes equationp. 80
The solutionsp. 83
Hedging and self-financing strategyp. 88
Some Nonlinear Aspectsp. 90
Nonlinear diffusion. The porous medium equationp. 90
Nonlinear reaction. Fischer's equationp. 93
Problemsp. 97
The Laplace Equationp. 102
Introductionp. 102
Well Posed Problems. Uniquenessp. 103
Harmonic Functionsp. 105
Discrete harmonic functionsp. 105
Mean value propertiesp. 109
Maximum principlesp. 110
The Dirichlet problem in a circle. Poisson's formulap. 113
Harnack's inequality and Liouville's theoremp. 117
A probabilistic solution of the Dirichlet problemp. 118
Recurrence and Brownian motionp. 122
Fundamental Solution and Newtonian Potentialp. 124
The fundamental solutionp. 124
The Newtonian potentialp. 126
A divergence-curl system. Helmholtz decomposition formulap. 128
The Green Functionp. 132
An integral identityp. 132
The Green functionp. 133
Green's representation formulap. 135
The Neumann functionp. 137
Uniqueness in Unbounded Domainsp. 139
Exterior problemsp. 139
Surface Potentialsp. 141
The double and single layer potentialsp. 142
The integral equations of potential theoryp. 146
Problemsp. 150
Scalar Conservation Laws and First Order Equationsp. 156
Introductionp. 156
Linear Transport Equationp. 157
Pollution in a channelp. 157
Distributed sourcep. 159
Decay and localized sourcep. 160
Inflow and outflow characteristics. A stability estimatep. 162
Traffic Dynamicsp. 164
A macroscopic modelp. 164
The method of characteristicsp. 165
The green light problemp. 168
Traffic jam aheadp. 172
Integral (or Weak) Solutionsp. 174
The method of characteristics revisitedp. 174
Definition of integral solutionp. 177
The Rankine-Hugoniot conditionp. 179
The entropy conditionp. 183
The Riemann problemp. 185
Vanishing viscosity methodp. 186
The viscous Burger equationp. 189
The Method of Characteristics for Quasilinear Equationsp. 192
Characteristicsp. 192
The Cauchy problemp. 194
Lagrange method of first integralsp. 202
Underground flowp. 205
General First Order Equationsp. 207
Characteristic stripsp. 207
The Cauchy Problemp. 210
Problemsp. 214
Waves and Vibrationsp. 221
General Conceptsp. 221
Types of wavesp. 221
Group velocity and dispersion relationp. 223
Transversal Waves in a Stringp. 226
The modelp. 226
Energyp. 228
The One-dimensional Wave Equationp. 229
Initial and boundary conditionsp. 229
Separation of variablesp. 231
The d'Alembert Formulap. 236
The homogeneous equationp. 236
Generalized solutions and propagation of singularitiesp. 240
The fundamental solutionp. 244
Non homogeneous equation. Duhamel's methodp. 246
Dissipation and dispersionp. 247
Second Order Linear Equationsp. 249
Classificationp. 249
Characteristics and canonical formp. 252
Hyperbolic Systems with Constant Coefficientsp. 257
The Multi-dimensional Wave Equation (n > 1)p. 261
Special solutionsp. 261
Well posed problems. Uniquenessp. 263
Two Classical Modelsp. 266
Small vibrations of an elastic membranep. 266
Small amplitude sound wavesp. 270
The Cauchy Problemp. 274
Fundamental solution (n = 3) and strong Huygens' principlep. 274
The Kirchhoff formulap. 277
Cauchy problem in dimension 2p. 279
Non homogeneous equation. Retarded potentialsp. 281
Linear Water Wavesp. 282
A model for surface wavesp. 282
Dimensionless formulation and linearizationp. 286
Deep water wavesp. 288
Interpretation of the solutionp. 290
Asymptotic behaviorp. 292
The method of stationary phasep. 293
Problemsp. 296
Elements of Functional Analysisp. 302
Motivationsp. 302
Norms and Banach Spacesp. 307
Hilbert Spacesp. 311
Projections and Basesp. 316
Projectionsp. 316
Basesp. 320
Linear Operators and Dualityp. 326
Linear operatorsp. 326
Functionals and dual spacep. 328
The adjoint of a bounded operatorp. 331
Abstract Variational Problemsp. 334
Bilinear forms and the Lax-Milgram Theoremp. 334
Minimization of quadratic functionalsp. 339
Approximation and Galerkin methodp. 340
Compactness and Weak Convergencep. 343
Compactnessp. 343
Weak convergence and compactnessp. 344
Compact operatorsp. 348
The Fredholm Alternativep. 350
Solvability for abstract variational problemsp. 350
Fredholm's Alternativep. 354
Spectral Theory for Symmetric Bilinear Formsp. 356
Spectrum of a matrixp. 356
Separation of variables revisitedp. 357
Spectrum of a compact self-adjoint operatorp. 358
Application to abstract variational problemsp. 360
Problemsp. 362
Distributions and Sobolev Spacesp. 367
Distributions. Preliminary Ideasp. 367
Test Functions and Mollifiersp. 369
Distributionsp. 373
Calculusp. 377
The derivative in the sense of distributionsp. 377
Gradient, divergence, lapacianp. 379
Multiplication, Composition, Division, Convolutionp. 382
Multiplication. Leibniz rulep. 382
Compositionp. 384
Divisionp. 385
Convolutionp. 386
Fourier Transformp. 388
Tempered distributionsp. 388
Fourier transform in S'p. 391
Fourier transform in L[superscript 2]p. 393
Sobolev Spacesp. 394
An abstract constructionp. 394
The space H[superscript 1] ([Omega])p. 396
The space H[superscript 1 subscript 0] ([Omega])p. 399
The dual of H[superscript 1 subscript 0]([Omega])p. 401
The spaces H[superscript m] ([Omega]), m > 1p. 403
Calculus rulesp. 404
Fourier Transform and Sobolev Spacesp. 405
Approximations by Smooth Functions and Extensionsp. 406
Local approximationsp. 406
Estensions and global approximationsp. 407
Tracesp. 411
Traces of functions in H[superscript 1] ([Omega])p. 411
Traces of functions in H[superscript m] ([Omega])p. 414
Trace spacesp. 415
Compactness and Embeddingsp. 418
Rellich's theoremp. 418
Poincare's inequalitiesp. 419
Sobolev inequality in R[superscript n]p. 420
Bounded domainsp. 422
Spaces Involving Timep. 424
Functions with values in Hilbert spacesp. 424
Sobolev spaces involving timep. 425
Problemsp. 428
Variational Formulation of Elliptic Problemsp. 431
Elliptic Equationsp. 431
The Poisson Problemp. 433
Diffusion, Drift and Reaction (n = 1)p. 435
The problemp. 435
Dirichlet conditionsp. 435
Neumann, Robin and mixed conditionsp. 439
Variational Formulation of Poisson's Problemp. 444
Dirichlet problemp. 444
Neumann, Robin and mixed problemsp. 447
Eigenvalues of the Laplace operatorp. 451
An asymptotic stability resultp. 453
General Equations in Divergence Formp. 454
Basic assumptionsp. 454
Dirichlet problemp. 455
Neumann problemp. 461
Robin and mixed problemsp. 463
Weak Maximum Principlesp. 465
Regularityp. 467
Equilibrium of a platep. 473
A Monotone Iteration Scheme for Semilinear Equationsp. 475
A Control Problemp. 478
Structure of the problemp. 478
Existence and uniqueness of an optimal pairp. 480
Lagrange multipliers and optimality conditionsp. 481
An iterative algorithmp. 483
Problemsp. 485
Weak Formulation of Evolution Problemsp. 492
Parabolic Equationsp. 492
Diffusion Equationp. 493
The Cauchy-Dirichlet problemp. 493
Faedo-Galerkin method (I)p. 496
Solution of the approximate problemp. 497
Energy estimatesp. 498
Existence, uniqueness and stabilityp. 500
Regularityp. 503
The Cauchy-Neuman problemp. 505
Cauchy-Robin and mixed problemsp. 507
A control problemp. 509
General Equationsp. 512
Weak formulation of initial value problemsp. 512
Faedo-Galerkin method (II)p. 514
The Wave Equationp. 517
Hyperbolic Equationsp. 517
The Cauchy-Dirichlet problemp. 518
Faedo-Galerkin method (III)p. 520
Solution of the approximate problemp. 521
Energy estimatesp. 522
Existence, uniqueness and stabilityp. 525
Problemsp. 528
Fourier Seriesp. 531
Fourier coefficientsp. 531
Expansion in Fourier seriesp. 534
Measures and Integralsp. 537
Lebesgue Measure and Integralp. 537
A counting problemp. 537
Measures and measurable functionsp. 539
The Lebesgue integralp. 541
Some fundamental theoremsp. 542
Probability spaces, random variables and their integralsp. 543
Identities and Formulasp. 545
Gradient, Divergence, Curl, Laplacianp. 545
Formulasp. 547
Referencesp. 549
Indexp. 553
Table of Contents provided by Ingram. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program