rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9789812381071

Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, and Financial Markets

by
  • ISBN13:

    9789812381071

  • ISBN10:

    9812381074

  • Edition: 3rd
  • Format: Paperback
  • Copyright: 2004-03-01
  • Publisher: World Scientific Pub Co Inc
  • Purchase Benefits
List Price: $78.00

Summary

This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.

In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by def

Table of Contents

Preface vii
Preface to the Second Edition ix
Preface to the First Edition xi
1 Fundamentals
1(76)
1.1 Classical Mechanics
1(10)
1.2 Relativistic Mechanics in Curved Spacetime
11(1)
1.3 Quantum Mechanics
12(6)
1.4 Dirac's Bra-Ket Formalism
18(8)
1.5 Observables
26(5)
1.6 Quantum Mechanics of General Lagrangian Systems
31(6)
1.7 Particle on the Surface of a Sphere
37(2)
1.8 Spinning Top
39(7)
1.9 Time Evolution Operator
46(3)
1.10 Properties of Time Evolution Operator
49(7)
1.11 Scattering
56(9)
1.11.1 Scattering Matrix
56(1)
1.11.2 Cross Section
57(2)
1.11.3 Born Approximation
59(1)
1.11.4 Partial Wave Expansion and Eikonal Approximation
59(2)
1.11.5 Scattering Amplitude from Time Evolution Amplitude
61(1)
1.11.6 Lippmann-Schwinger Equation
62(3)
1.12 Heisenberg Picture of Quantum Mechanics
65(3)
1.13 Classical and Quantum Statistics
68(6)
1.13.1 Canonical Ensemble
69(1)
1.13.2 Grand-Canonical Ensemble
70(4)
Appendix 1A The Asymmetric Top
74(2)
Notes and References
76(1)
2 Path Integrals - Elementary Properties and Simple Solutions
77(110)
2.1 Path Integral Representation of Time Evolution Amplitudes
77(10)
2.2 Exact Solution for Free Particle
87(9)
2.3 Finite Slicing Properties of Free-Particle Amplitude
96(1)
2.4 Exact Solution for Harmonic Oscillator
97(5)
2.5 Useful Fluctuation Formulas
102(2)
2.6 Oscillator Amplitude on Finite Time Lattice
104(2)
2.7 Gelfand-Yaglom Formula
106(1)
2.7.1 Recursive Calculation of Fluctuation Determinant
106(1)
2.7.2 Examples
107(2)
2.7.3 Calculation on Unsliced Time Axis
109(1)
2.7.4 D'Alembert's Construction
110(1)
2.7.5 Another Simple Formula
111(2)
2.7.6 Generalization to D Dimensions
113(1)
2.8 Path Integral for Harmonic Oscillator with Arbitrary Time-Dependent Frequency
114(1)
2.8.1 Coordinate Space
114(3)
2.8.2 Momentum Space
117(2)
2.9 Free-Particle and Oscillator Wave Functions
119(2)
2.10 Path Integrals and Quantum Statistics
121(2)
2.11 Density Matrix
123(5)
2.12 Quantum Statistics of Harmonic Oscillator
128(6)
2.13 Tine-Dependent Harmonic Potential
134(4)
2.14 Functional Measure in Fourier Space
138(3)
2.15 Classical Limit
141(1)
2.16 Calculation Techniques on Sliced Time Axis. Poisson Formula
142(5)
2.17 Field-Theoretic Definition of Harmonic Path Integral by Analytic Regularization
147(12)
2.17.1 Zero-Temperature Evaluation of Frequency Sun
148(3)
2.17.2 Finite-Temperature Evaluation of Frequency Sum
151(2)
2.17.3 Duality Transformation and Low-Temperature Expansion
153(6)
2.18 Finite-N Behavior of Thermodynamic Quantities
159(2)
2.19 Time Evolution Amplitude of Freely Falling Particle
161(2)
2.20 Charged Particle in Magnetic Field
163(5)
2.21 Charged Particle in Magnetic. Field and Harmonic Potential
168(3)
2.22 Gauge Invariance and Alternative Path Integral Representation
171(1)
2.23 Velocity Path Integral
172(2)
2.24 Path Integral Representation of Scattering Matrix
174(10)
2.24.1 General Development
174(3)
2.24.2 Improved Formulation
177(1)
2.24.3 Eikonal Approximation to Scattering Amplitude
178(1)
Appendix 2A Derivation of Baker-Campbell-Hausdorff and Magnus Formulas
179(3)
Appendix 2B Direct Calculation of Time-Sliced Oscillator Amplitude
182(2)
Appendix 2C Derivation of Mehler Formula
184(1)
Notes and References
184(3)
3 External Sources, Correlations, and Perturbation Theory
187(1)
3.1 External Sources
187(3)
3.2 Green Function of Harmonic Oscillator
190(1)
3.2.1 Wronski Construction
191(4)
3.2.2 Spectral Representation
195(1)
3.3 Green Functions of First-Order Differential Equation
196(1)
3.3.1 Time-Independent Frequency
197(7)
3.3.2 Time-Dependent Frequency
204(1)
3.4 Summing Spectral Representation of Green Function
205(2)
3.5 Wronski Construction for Periodic and Antiperiodic Green Functions
207(1)
3.6 Evolution Amplitude in Presence of Source Term
208(5)
3.7 External Source in Quantum-Statistical Path Integral
213(1)
3.7.1 Continuation of Real-Time Result
213(4)
3.7.2 Calculation at Imaginary Time
217(7)
3.8 Lattice Green Function
224(1)
3.9 Correlation Functions, Generating Functional, and Wick Expansion
225(3)
3.10 Correlation Functions of Charged Particle in Magnetic Field
228(1)
3.11 Correlation Functions in Canonical Path Integral
229(8)
3.11.1 Harmonic Correlation Functions
230(3)
3.11.2 Relations between Various Amplitudes
233(1)
3.11.3 Harmonic Generating Functionals
234(3)
3.12 Particle in Heat Bath
237(4)
3.13 Particle in Heat Bath of Photons
241(2)
3.14 Harmonic Oscillator in Heat Bath
243(3)
3.15 Perturbation Expansion of Anharmonic Systems
246(3)
3.16 Calculation of Perturbation Series with Feynman Diagrams
249(4)
3.17 Field-Theoretic Definition of Anharmonic Path Integral
253(1)
3.18 Generating Functional of Connected Correlation Functions
254(19)
3.18.1 Connectedness Structure of Correlation Functions
255(3)
3.18.2 Decomposition of Correlation Functions into Connected Correlation Functions
258(2)
3.18.3 Functional Generation of Vacuum Diagrams
260(4)
3.18.4 Correlation Functions from Vacuum Diagrams
264(2)
3.18.5 Generating Functional for Vertex Functions. Effective Action
266(5)
3.18.6 Ginzburg-Landau Approximation to Generating Functional
271(1)
3.18.7 Composite Fields
272(1)
3.19 Path Integral Calculation of Effective Action by Loop Expansion
273(14)
3.19.1 General Formalism
273(5)
3.19.2 Quadratic Fluctuations
278(3)
3.19.3 Effective Action to Second Order in h
281(3)
3.19.4 Background Field Method for Effective Action
284(3)
3.20 Nambu-Goldstone Theorem
287(2)
3.21 Effective Classical Potential
289(11)
3.21.1 Effective Classical Boltzmann Factor
291(2)
3.21.2 High- and Low-Temperature Behavior
293(2)
3.21.3 Alternative Candidate for Effective Classical Potential
295(1)
3.21.4 Harmonic Correlation Function without Zero Mode
296(1)
3.21.5 Perturbation Expansion
296(2)
3.21.6 First-Order Perturbative Result
298(2)
3.22 Perturbative Calculation of Scattering Amplitude
300(3)
3.22.1 Generating Functional
300(1)
3.22.2 Application to Scattering Amplitude
301(1)
3.22.3 First Correction to Eikonal Approximation
302(1)
3.23 Rayleigh-Schrödinger Perturbation Expansion
303(6)
3.23.1 Energy Levels
303(5)
3.23.2 Scattering Amplitudes
308(1)
3.24 Functional Determinants from Green Functions
309(6)
Appendix 3A Feynman Integrals for T not equal to 0
315(3)
Appendix 3B Energy Shifts for gx4/4-Interaction
318(2)
Appendix 3C Matrix Elements for General Potential
320(2)
Appendix 3D Level-Shifts from Schrödinger Equation
322(2)
Appendix 3E Recursion Relations for Perturbation Coefficients
324(5)
3E.1 One-Dimensional Interaction x4
324(4)
3E.2 Interaction r4 in D-Dimensional Radial Oscillator
328(1)
3E.3 Interaction r2q in D Dimensions
329(1)
3E.4 Polynomial Interaction in D Dimensions
329(1)
Notes and References
329(3)
4 Semiclassical Time Evolution Amplitude
332(1)
4.1 The Wentzel Kramers Brillouin (WKB) Approximation
332(4)
4.2 Saddle Point Approximation
336(1)
4.2.1 Ordinary Integrals
337(2)
4.2.2 Path Integrals
339(6)
4.3 Van Vleck-Pauli-Morette Determinant
345(4)
4.4 Fundamental Composition Law for Semiclassical Time Evolution Amplitude
349(2)
4.5 Semiclassical Fixed-Energy Amplitude
351(2)
4.6 Semiclassical Amplitude in Momentum Space
353(2)
4.7 Semiclassical Quantum Mechanical Partition Function
355(5)
4.8 Multi-Dimensional Systems
360(5)
4.9 Quantum Corrections to Classical Density of States
365(5)
4.10 Thomas-Fermi Model of Neutral Atoms
370(17)
4.10.1 Semiclassical Limit
370(8)
4.10.2 Quantum Correction Near Origin
378(2)
4.10.3 Exchange Energy
380(2)
4.10.4 Higher Quantum Corrections to Thomas-Fermi Energies
382(5)
4.11 Classical Action of Coulomb System
387(9)
4.12 Semiclassical Scattering
396(4)
4.12.1 General Formulation
396(3)
4.12.2 Semiclassical Cross Section of Mott Scattering
399(1)
Notes and References
400(3)
5 Variational Perturbation Theory
403(1)
5.1 Variational Approach to Effective Classical Partition Function
403(1)
5.2 Local Harmonic Trial Partition Function
404(5)
5.3 Optimal Upper Bound
409(1)
5.4 Accuracy of Variational Approximation
410(2)
5.5 Weakly Bound Ground State Energy in Finite-Range Potential Well
412(2)
5.6 Possible Direct Generalizations
414(1)
5.7 Effective Classical Potential for Anharmonic Oscillator
415(6)
5.8 Particle Densities
421(3)
5.9 Extension to D Dimensions
424(2)
5.10 Application to Coulomb and Yukawa Potentials
426(3)
5.11 Hydrogen Atom in Strong Magnetic Field
429(7)
5.11.1 Weak-Field Behavior
433(1)
5.11.2 Effective Classical Potential
433(3)
5.12 Effective Potential and Magnetization Curves
436(2)
5.13 Variational Approach to Excitation Energies
438(5)
5.14 Systematic Improvement of Feynman-Kleinert Approximation
443(3)
5.15 Applications of Variational Perturbation Expansion
446(6)
5.15.1 Anharmonic Oscillator at T = 0
446(2)
5.15.2 Anharmonic Oscillator for T > 0
448(4)
5.16 Convergence of Variational Perturbation Expansion
452(7)
5.17 Variational Perturbation Theory for Strong-Coupling Expansion
459(3)
5.18 General Strong-Coupling Expansions
462(3)
5.19 Variational Interpolation between Weak and Strong-Coupling Expansions
465(2)
5.20 Systematic Improvement of Excited Energies
467(1)
5.21 Variational Treatment of Double-Well Potential
468(2)
5.22 Higher-Order Effective Classical Potential for Nonpolynomial Interactions
470(12)
5.22.1 Evaluation of Path Integrals
471(1)
5.22.2 Higher-Order Smearing Formula in D Dimensions
472(2)
5.22.3 Isotropic Second-Order Approximation to Coulomb Problem
474(2)
5.22.4 Anisotropic Second-Order Approximation to Coulomb Problem
476(2)
5.22.5 Zero-Temperature Limit
478(4)
5.23 Polarons
482(15)
5.23.1 Partition Function
484(2)
5.23.2 Harmonic Trial System
486(6)
5.23.3 Effective Mass
492(1)
5.23.4 Second-Order Correction
492(1)
5.23.5 Polaron in Magnetic Field, Bipolarons. etc
493(1)
5.23.6 Variational Interpolation for Polaron Energy and Mass
494(3)
5.24 Density Matrices
497(54)
5.24.1 Harmonic Oscillator
498(1)
5.24.2 Variational Perturbation Theory for Density Matrices
499(2)
5.24.3 Smearing Formula for Density Matrices
501(2)
5.24.4 First-Order Variational Results
503(5)
5.24.5 Smearing Formula in Higher Spatial Dimensions
508(2)
5.24.6 Applications
510(11)
Appendix 5A Feynman Integrals for T not equal to 0 without Zero Frequency
521(2)
Appendix 513 Proof of Scaling Relation for the Extrema of WN
523(3)
Appendix 5C Second-Order Shift of Polaron Energy
526(1)
Notes and References
527(5)
6 Path Integrals with Topological Constraints
532(1)
6.1 Point Particle on Circle
532(4)
6.2 Infinite Wall
536(5)
6.3 Point Particle in Box
541(2)
6.4 Strong-Coupling Theory for Particle in Box
543(1)
6.4.1 Partition Function
544(1)
6.4.2 Perturbation Expansion
544(3)
6.4.3 Variational Strong-Coupling Approximations
547(2)
6.4.4 Special Properties of Expansion
549(1)
6.4.5 Exponentially Fast Convergence
550(1)
Notes and References
551(2)
7 Many Particle Orbits Statistics and Second Quantization
553(1)
7.1 Ensembles of Bose and Fermi Particle Orbits
554(7)
7.2 Bose-Einstein Condensation
561(1)
7.2.1 Free Bose Gas
561(9)
7.2.2 Effect of Interactions
570(5)
7.2.3 Bose-Einstein Condensation in Harmonic Trap
575(9)
7.2.4 Interactions in Harmonic Trap
584(4)
7.3 Gas of Free Fermions
588(5)
7.4 Statistics Interaction
593(5)
7.5 Fractional Statistics
598(1)
7.6 Second-Quantized Bose Fields
599(3)
7.7 Fluctuating Bose Fields
602(6)
7.8 Coherent States
608(4)
7.9 Dimensional Regularization of Functional Determinants
612(3)
7.10 Second-Quantized Fermi Fields
615(1)
7.11 Fluctuating Fermi Fields
616(8)
7.11.1 Grassiann Variables
616(3)
7.11.2 Fermionic Functional Determinant
619(4)
7.11.3 Coherent States for Fermions
623(1)
7.12 Hilbert Space of Quantized Grassmann Variable
624(9)
7.12.1 Single Real Grassmann Variable
625(3)
7.12.2 Quantizing Harmonic Oscillator with Grassmann Variables
628(1)
7.12.3 Spin System with Grassmann Variables
629(4)
7.13 External Sources in a*, α -Path Integral
633(2)
7.14 Generalization to Pair Terms
635(2)
7.15 Spatial Degrees of Freedom
637(5)
7.15.1 Grand-Canonical Ensemble of Particle Orbits from Free Fluctuating Field
637(1)
7.15.2 First versus Second Quantization
638(1)
7.15.3 Interacting Fields
639(1)
7.15.4 Effective Classical Field Theory
640(2)
Notes and References
642(4)
8 Path Integrals in Spherical Coordinates
646(1)
8.1 Angular Decomposition in Two Dimensions
646(3)
8.2 Trouble with Feynman's Path Integral Formula in Radial Coordinates
649(4)
8.3 Cautionary Remarks
653(3)
8.4 Time Slicing Corrections
656(5)
8.5 Angular Decomposition in Three and More Dimensions
661(1)
8.5.1 Three Dimensions
661(3)
8.5.2 D Dimensions
664(5)
8.6 Radial Path Integral for Harmonic Oscillator and Free Particle
669(1)
8.7 Particle near the Surface of a Sphere in D Dimensions
670(3)
8.8 Angular Barriers near the Surface of a Sphere
673(1)
8.8.1 Angular Barriers in Three Dimensions
673(5)
8.8.2 Angular Barriers in Four Dimensions
678(5)
8.9 Motion on a Sphere in D Dimensions
683(4)
8.10 Path Integrals on Group Spaces
687(3)
8.11 Path Integral of a Spinning Top
690(1)
Notes and References
691(2)
9 Fixed-Energy Amplitude and Wave Functions
693(1)
9.1 General Relations
693(3)
9.2 Free Particle in D Dimensions
696(3)
9.3 Harmonic Oscillator in D Dimensions
699(6)
9.4 Free Particle from ω -> 0 -Limit of Oscillator
705(2)
9.5 Charged Particle in Uniform Magnetic Field
707(7)
Notes and References
714(1)
10 Spaces with Curvature and Torsion 715(128)
10.1 Einstein's Equivalence Principle
716(1)
10.2 Classical Motion of Mass Point in General Metric-Affine Space
717(1)
10.2.1 Equations of Motion
717(3)
10.2.2 Nonholonomic Mapping to Spaces with Torsion
720(5)
10.2.3 New Equivalence Principle
725(1)
10.2.4 Classical Action Principle for Spaces with Curvature and Torsion
726(4)
10.3 Path Integral in Metric-Affine Space
730(1)
10.3.1 Nonholonomic Transformation of Action
731(4)
10.3.2 Measure of Path Integration
735(6)
10.4 Completing Solution of Path Integral on Surface of Sphere
741(1)
10.5 External Potentials and Vector Potentials
742(3)
10.6 Perturbative Calculation of Path Integrals in Curved Space
745(5)
10.6.1 Free and Interacting Parts of Action
745(2)
10.6.2 Zero Temperature
747(3)
10.7 Model Study of Coordinate Invariance
750(1)
10.7.1 Diagrammatic Expansion
751(2)
10.7.2 Diagrammatic Expansion in d Time Dimensions
753(1)
10.8 Calculating Loop Diagrams
754(7)
10.8.1 Reformulation in Configuration Space
761(1)
10.8.2 Integrals over Products of Two Distributions
762(1)
10.8.3 Integrals over Products of Four Distributions
763(3)
10.9 Distributions as Limits of Bessel Function
766(1)
10.9.1 Correlation Function and Derivatives
766(1)
10.9.2 Integrals over Products of Two Distributions
767(2)
10.9.3 Integrals over Products of Four Distributions
769(2)
10.10 Simple Rules for Calculating Singular Integrals
771(5)
10.11 Perturbative Calculation on Finite Time Intervals
776(26)
10.11.1 Diagrammatic Elements
777(1)
10.11.2 Cumulant Expansion of D-Dimensional Free-Particle Amplitude in Curvilinear Coordinates
778(2)
10.11.3 Propagator in 1-epsilon Time Dimensions
780(2)
10.11.4 Coordinate Independence for Dirichlet Boundary Conditions
782(7)
10.11.5 Time Evolution Amplitude in Curved Space
789(6)
10.11.6 Covariant Results for Arbitrary Coordinates
795(7)
10.12 Effective Classical Potential in Curved Space
802(15)
10.12.1 Covariant Fluctuation Expansion
803(2)
10.12.2 Arbitrariness of qμ0
805(2)
10.12.3 Zero-Mode Properties
807(3)
10.12.4 Covariant Perturbation Expansion
810(1)
10.12.5 Covariant Result from Noncovariant Expansion
811(3)
10.12.6 Particle on Unit Sphere
814(3)
10.13 Covariant Effective Action fur Quantum Particle with Coordinate-Dependent Mass
817(6)
10.13.1 Formulating the Problem
817(3)
10.13.2 Derivative Expansion
820(3)
Appendix 10A Nonholonomic Gauge Transformations in Electromagnetism
823(10)
10A.1 Gradient Representation of Magnetic Field of Current Loop
824(3)
10A.2 Generating Magnetic Fields by Multivalued Gauge Transformations
827(1)
10A.3 Magnetic Monopoles
828(1)
10A.4 Minimal Magnetic Coupling of Particles from Multivalued Gauge Transformations
829(2)
10A.5 Gauge Field Representation of Current Loops
831(2)
Appendix 10B Difference between Multivalued Basis Tetrads and Vierbein Fields
833(2)
Appendix 10C Cancellation of Powers of δ(0)
835(3)
Notes and References
838(5)
11 Schrödinger Equation in General Metric-Affine Spaces 843(24)
11.1 Integral Equation for Time Evolution Amplitude
843(1)
11.1.1 From the Recursion Relation to Schrödinger's Equation
844(3)
11.1.2 Alternative Evaluation
847(3)
11.2 Equivalent Path Integral Representations
850(4)
11.3 Potentials and Vector Potentials
854(1)
11.4 Unitarity Problem
855(2)
11.5 Alternative Attempts
857(1)
11.6 DeWitt-Seeley Expansion of Time Evolution Amplitude
858(4)
Appendix 11A Cancellations in Effective Potential
862(3)
Appendix 11B DeWitt's Amplitude
865(1)
Notes and References
865(2)
12 New Path Integral Formula for Singular Potentials 867(13)
12.1 Path Collapse in Feynman's formula for the Coulomb System
867(3)
12.2 Stable Path Integral with Singular Potentials
870(5)
12.3 Time-Dependent Regularization
875(2)
12.4 Relation with Schrödinger Theory. Wave Functions
877(2)
Notes and References
879(1)
13 Path Integral of Coulomb System 880(45)
13.1 Pseudotime Evolution Amplitude
880(2)
13.2 Solution for the Two-Dimensional Coulomb System
882(5)
13.3 Absence of Time Slicing Corrections for D = 2
887(6)
13.4 Solution for the Three-Dimensional Coulomb System
893(6)
13.5 Absence of Time Slicing Corrections for D = 3
899(4)
13.6 Geometric Argument for Absence of Time Slicing Corrections
903(1)
13.7 Comparison with Schrödinger Theory
904(5)
13.8 Angular Decomposition of Amplitude, and Radial Wave Functions
909(4)
13.9 Remarks on Geometry of Four-Dimensional uμ-Space
913(2)
13.10 Solution in Momentum Space
915(4)
13.10.1 Gauge-Invariant Canonical Path Integral
915(3)
13.10.2 Another Form of Action
918(1)
13.10.3 Absence of Extra R-Term
919(1)
Appendix 13A Group-Theoretic Aspects of Coulomb States
919(5)
Notes and References
924(1)
14 Solution of Further Path Integrals by the Duru-Kleinert Method 925(44)
14.1 One-Dimensional Systems
925(3)
14.2 Derivation of the Effective Potential
928(5)
14.3 Comparison with Schrödinger Quantum Mechanics
933(1)
14.4 Applications
933(1)
14.4.1 Radial Harmonic Oscillator and Morse System
934(2)
14.4.2 Radial Coulomb System and Morse System
936(1)
14.4.3 Equivalence of Radial Coulomb System and Radial Oscillator
937(8)
14.4.4 Angular Barrier hear Sphere, and Rosen-Morse Potential
945(3)
14.4.5 Angular Barrier near Four-Dimensional Sphere, and General Rosen-Morse Potential
948(3)
14.4.6 Hulthén Potential and General Rosen-Morse Potential
951(2)
14.4.7 Extended Hulthén Potential and General Rosen-Morse Potential
953(1)
14.5 D-Dimensional Systems
954(1)
14.6 Path Integral of the Dionium Atom
955(1)
14.6.1 Formal Solution
956(3)
14.6.2 Absence of Time Slicing Corrections
959(4)
14.7 Time-Dependent Durn-Kleinert Transformation
963(4)
Appendix 14A Affine Connection of Dionium Atom
967(1)
Appendix 14B Algebraic Aspects of Dionium States
967(1)
Notes and References
968(1)
15 Path Integrals in Polymer Physics 969(49)
15.1 Polymers and Ideal Random Chains
969(2)
15.2 Moments of End-to-End Distribution
971(3)
15.3 Exact End-to-End Distribution in Three Dimensions
974(2)
15.4 Short-Distance Expansion for a Long Polymer
976(2)
15.5 Saddle Point Approximation to Three-Dimensional End-to-End Distribution
978(1)
15.6 Path Integral for Continuous Gaussian Distribution
979(2)
15.7 Stiff Polymers
981(2)
15.7.1 Path Integral
983(1)
15.7.2 Moments of End-to-End Distribution
984(4)
15.8 Schrödinger Equation and Recursive Solution for Moments
988(1)
15.8.1 Recursive Solution of Schrödinger Equation
989(3)
15.8.2 Approximation to End-to-End Distribution
992(5)
15.8.3 From Moments to End-to-End Distribution for D = 3
997(2)
15.9 Excluded-Volume Effects
999(7)
15.10 Flory's Argument
1006(1)
15.11 Polymer Field Theory
1007(8)
15.12 Fermi Fields for Self-Avoiding Lines
1015(1)
Notes and References
1015(3)
16 Polymers and Particle Orbits in Multiply Connected Spaces 1018(85)
16.1 Simple Model for Entangled Polymers
1018(3)
16.2 Entangled Fluctuating Particle Orbit: Aharonov-Bohm Effect
1021(11)
16.3 Aharonov-Bohm Effect and Fractional Statistics
1032(5)
16.4 Self-Entanglement of Polymer
1037(14)
16.5 The Gauss Invariant of Two Curves
1051(3)
16.6 Bound States of Polymers = Ribbons
1054(6)
16.7 Chern-Simons Theory of Entanglements
1060(3)
16.8 Entangled Pair of Polymers
1063(3)
16.8.1 Polymer Field Theory for Probabilities
1066(2)
16.8.2 Calculation of Partition Function
1068(2)
16.8.3 Calculation of Numerator in Second Moment
1070(1)
16.8.4 First Diagram in Fig. 16.23
1071(2)
16.8.5 Second and Third Diagrams in Fig. 16.23
1073(1)
16.8.6 Fourth Diagram in Fig. 16.23
1074(1)
16.8.7 Second Topological Moment
1075(1)
16.9 Chern-Simons Theory of Statistical Interaction
1076(21)
16.10 Second-Quantized Anon Fields
1078(4)
16.11 Fractional Quantum Hall Effect
1082(3)
16.12 Anyonic Superconductivity
1085(2)
16.13 Non-Abelian Chern-Simons Theory
1087(3)
Appendix 16A Calculation of Feymnan Diagrams for Polymer Entanglement
1090(1)
Appendix 16B Kauffman and BLM/Ho polynomials
1091(1)
Appendix 16C Skein Relation between Wilson Loop Integrals
1092(3)
Appendix 16D London Equations
1095(2)
Appendix 16F Hall Effect in Electron Gas
1097(1)
Notes and References
1097(6)
17 Tunneling 1103(100)
17.1 Double-Well Potential
1103(3)
17.2 Classical Solutions - Kinks and Antikinks
1106(4)
17.3 Quadratic Fluctuations
1110(6)
17.3.1 Zero-Eigenvalue Mode
1116(3)
17.3.2 Continuum Pact of Fluctuation Factor
1119(3)
17.4 General Formula for Eigenvalue Ratios
1122(2)
17.5 Fluctuation Determinant from Classical Solution
1124(3)
17.6 Wave Functions of Double-Well
1127(1)
17.7 Gas of Kinks and Antikinks and Level Splitting Formula
1128(5)
17.8 Fluctuation Correction to Level Splitting
1133(5)
17.9 Tunneling and Decay
1138(9)
17.10 Large-Order Behavior of Perturbation Expansions
1147(29)
17.10.1 Growth Properties of Expansion Coefficients
1148(3)
17.10.2 Semiclassical Large-Order Behavior
1151(5)
17.10.3 Fluctuation Correction to the Imaginary Part and Large-Order Behavior
1156(3)
17.10.4 Variational Approach to Tunneling. Perturbation Coefficients to All Orders
1159(8)
17.10.5 Convergence of Variational Perturbation Expansion
1167(9)
17.11 Decay of Supercurrent in Thin Closed Wire
1176(11)
17.12 Decay of Metastable Thermodynamic Phases
1187(7)
17.13 Decay of Metastable Vacuum State in Quantum Field Theory
1194(2)
17.14 Crossover from Quantum Tunneling to Thermally Driven Decay
1196(1)
Appendix 17A Feynman Integrals for Fluctuation Correction
1197(3)
Notes and References
1200(3)
18 Nonequilibrium Quantum Statistics 1203(100)
18.1 Linear Response and Time-Dependent Green Functions for T not equal to 0
1203(3)
18.2 Spectral Representations of T not equal to 0 Green Functions
1206(3)
18.3 Other Important Green Functions
1209(3)
18.4 Hermitian Adjoint Operators
1212(1)
18.5 Harmonic Oscillator Green Functions for T not equal to 0
1213(1)
18.5.1 Creation Annihilation Operators
1213(3)
18.5.2 Real Field Operators
1216(2)
18.6 Nonequilibrium Green Functions
1218(9)
18.7 Perturbation Theory for Nonequilibrium Green Functions
1227(3)
18.8 Path Integral Coupled to Thermal Reservoir
1230(5)
18.9 Fokker-Planck Equation
1235(1)
18.9.1 Canonical Path Integral for Probability Distribution
1236(2)
18.9.2 Solving the Operator Ordering Problem
1238(6)
18.9.3 Strung Damping
1244(3)
18.10 Langevin Equations
1247(3)
18.11 Stochastic Calculus
1250(6)
18.12 Supersymmetry
1256(2)
18.13 Stochastic Quantum Liouville Equation
1258(3)
18.14 Relation to Quantum Langevin Equation
1261(1)
18.15 Electromagnetic Dissipation and Decoherence
1261(5)
18.15.1 Forward Backward Path Integral
1262(4)
18.16 Master Equation for Time Evolution
1266(3)
18.17 Line Width
1269(1)
18.18 Lamb shift
1270(4)
18.19 Langevin Equations
1274(1)
18.20 Fokker-Planck Equation in Spaces with Curvature and Torsion
1275(2)
18.21 Stochastic Interpretation of Quantum-Mechanical Amplitudes
1277(2)
18.22 Stochastic Equation for Schrödinger Wave Function
1279(2)
18.23 Real Stochastic and Deterministic Equation for Schrödinger Wave Function
1281(4)
18.23.1 Stochastic Differential Equation
1281(1)
18.23.2 Equation for Noise Average
1282(1)
18.23.3 Harmonic Oscillator
1283(1)
18.23.4 General Potential
1283(1)
18.23.5 Deterministic Equation
1284(1)
18.24 Heisenberg Picture for Probability Evolution
1285(4)
Appendix 18A Inequalities for Diagonal Green Functions
1289(4)
Appendix 18B General Generating Functional
1293(5)
Appendix 18C Wick Decomposition of Operator Products
1298(2)
Notes and References
1300(3)
19 Relativistic Particle Orbits 1303(39)
19.1 Special Features of Relativistic Path Integrals
1305(3)
19.2 Proper Action for Fluctuating Relativistic Particle Orbits
1308(1)
19.2.1 Gauge-Invariant Formulation
1308(2)
19.2.2 Simplest Gauge Fixing
1310(1)
19.2.3 Partition Function of Ensemble of Closed Particle Loops
1311(2)
19.2.4 Fixed-Energy Amplitude
1313(1)
19.3 Relativistic Coulomb System
1313(4)
19.4 Relativistic Particle in Electromagnetic Field
1317(1)
19.4.1 Action and Partition Function
1317(1)
19.4.2 Perturbation Expansion
1318(2)
19.4.3 Lowest-Order Vacuum Polarization
1320(4)
19.5 Path Integral for Spin-1/2 Particle
1324(1)
19.5.1 Dirac Theory
1324(4)
19.5.2 Path Integral
1328(2)
19.5.3 Amplitude with Electromagnetic Interaction
1330(3)
19.5.4 Effective Action in Electromagnetic Field
1333(1)
19.5.5 Perturbation Expansion
1334(1)
19.5.6 Vacuum Polarization
1335(2)
19.6 Supersymmetry
1337(1)
19.6.1 Global Invariance
1337(1)
19.6.2 Local Invariance
1338(2)
Notes and References
1340(2)
20 Path Integrals and Financial Markets 1342(61)
20.1 Fluctuation Properties of Financial Assets
1342(2)
20.1.1 Harmonic Approximation to Fluctuations
1344(2)
20.1.2 Lévy Distributions
1346(1)
20.1.3 Truncated Lévy Distributions
1347(5)
20.1.4 Asymmetric Truncated Lévy Distributions
1352(3)
20.1.5 Meixner Distributions
1355(1)
20.1.6 Other Non-Gaussian Distributions
1356(4)
20.1.7 Levy-Khintchine Formula
1360(1)
20.1.8 Debye-Waller Factor for Non-Gaussian Fluctuations
1361(1)
20.1.9 Path Integral for Non-Gaussian Distribution
1361(2)
20.1.10 Fokker-Planck-Type Equation
1363(5)
20.2 Martingales
1368(3)
20.2.1 Gaussian Martingales
1368(1)
20.2.2 Non-Gaussian Martingales
1369(2)
20.3 Origin of Heavy Tails
1371(15)
20.3.1 Pair of Stochastic Differential Equations
1371(1)
20.3.2 Fokker-Planck Equation
1372(3)
20.3.3 Solution of Fokker-Planck Equation
1375(1)
20.3.4 Pure x-Distribution
1376(2)
20.3.5 Long-Tine Behavior
1378(4)
20.3.6 Tail Behavior for all Times
1382(2)
20.3.7 Path Integral Calculation
1384(1)
20.3.8 Natural Martingales
1385(1)
20.4 Option Pricing
1386(17)
20.4.1 Black-Scholes Option Pricing Model
1387(2)
20.4.2 Evolution Equations of Portfolios with Options
1389(2)
20.4.3 Option Pricing for Gaussian Fluctuations
1391(4)
20.4.4 Option Pricing for Non-Gaussian Fluctuations
1395(3)
20.4.5 Option Pricing for Fluctuating Variance
1398(2)
20.4.6 Perturbation Expansion and Smile
1400(3)
Appendix 20A Large-x Behavior of Truncated Levy Distribution 1403(4)
Appendix 20B Gaussian Weight 1407(1)
Appendix 20C Comparison with Dow-Jones Data 1408(1)
Notes and References 1409(8)
Index 1417

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program