did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780521462396

The Physics of Laser-Atom Interactions

by
  • ISBN13:

    9780521462396

  • ISBN10:

    0521462398

  • Format: Hardcover
  • Copyright: 1997-10-13
  • Publisher: Cambridge University Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $142.00 Save up to $52.54
  • Rent Book $89.46
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    SPECIAL ORDER: 1-2 WEEKS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

This book provides a thorough introduction to the interaction of atoms and atomic ions with optical and magnetic fields. Particular emphasis is placed on the wealth of important multilevel effects, where atomic vapours exhibit anisotropic behaviour. As well as covering the classic two-level atom approach to light-atom interactions, a general multi-level formalism is also described in detail, and used to discuss optical pumping, two-dimensional spectroscopy and nonlinear optical dynamics. The final chapter deals with the mechanical effects of light, including the cooling and trapping of atoms. With full theoretical and experimental coverage, and over 250 illustrations, the book will be of great interest to graduate students of laser spectroscopy, quantum electronics and quantum optics, and to researchers in these fields.

Table of Contents

Preface xi(2)
Symbols and abbreviations xiii
1 Introduction
1(37)
1.1 Atoms
1(5)
1.1.1 Historical
1(2)
1.1.2 Quantum mechanics
3(3)
1.2 Light
6(6)
1.2.1 The quantum theory of light
6(4)
1.2.2 The classical description
10(2)
1.3 Atom-light interaction
12(9)
1.3.1 General
12(5)
1.3.2 Multilevel atoms
17(4)
1.4 Summary of relevant physical processes
21(17)
1.4.1 Laser spectroscopy
21(1)
1.4.2 Sublevel dynamics
22(3)
1.4.3 Optical properties
25(3)
1.4.4 Magnetic resonance
28(7)
1.4.5 Waves and particles
35(3)
2 Two-level atoms
38(36)
2.1 Quantum mechanical description
38(8)
2.1.1 The Jaynes-Cummings model
38(3)
2.1.2 Summary of results
41(5)
2.2 Semiclassical analysis
46(17)
2.2.1 Model
46(5)
2.2.2 Equation of motion
51(6)
2.2.3 Statics
57(2)
2.2.4 Stationary solution
59(4)
2.3 Dynamics
63(11)
2.3.1 Rabi flopping
63(3)
2.3.2 Free precession
66(4)
2.3.3 Photon echoes
70(4)
3 Three-level effects
74(45)
3.1 Phenomenological introduction
74(3)
3.1.1 Model atoms
74(2)
3.1.2 Coherence transfer
76(1)
3.2 System and Hamiltonian
77(6)
3.2.1 Single-transition operators
77(2)
3.2.2 Irradiation of a single transition
79(2)
3.2.3 Irradiation of two transitions
81(2)
3.3 Three-level dynamics
83(16)
3.3.1 Excitation of a single transition
83(2)
3.3.2 Coherence transfer
85(2)
3.3.3 Three-level echoes
87(3)
3.3.4 Quantum beats
90(1)
3.3.5 Raman excitation
91(6)
3.3.6 Bichromatic excitation
97(2)
3.4 Steady-state effects
99(10)
3.4.1 Coherent population trapping
100(5)
3.4.2 Coherent Raman scattering
105(4)
3.5 Overdamped systems
109(10)
3.5.1 Characteristics
109(3)
3.5.2 Adiabatic limit
112(1)
3.5.3 Optical pumping
113(2)
3.5.4 Light shift and damping
115(2)
3.5.5 Ground state dynamics
117(2)
4 Internal degrees of freedom
119(41)
4.1 Rotational symmetry
119(12)
4.1.1 Motivation
119(1)
4.1.2 Rotations around a single axis
120(3)
4.1.3 Rotations in three dimensions
123(3)
4.1.4 Tensor operators
126(2)
4.1.5 Hamiltonian and Schrodinger equations
128(3)
4.2 Angular momentum
131(6)
4.2.1 Radiation field
131(3)
4.2.2 Atomic angular momentum
134(3)
4.3 Multipole moments
137(3)
4.3.1 Multiple expansion
137(2)
4.3.2 Alignment
139(1)
4.4 Interaction with external fields
140(11)
4.4.1 Electric fields
140(3)
4.4.2 Magnetic interactions
143(3)
4.4.3 Magnetic resonance spectra
146(3)
4.4.4 Larmor precession
149(2)
4.5 Electric dipole transitions
151(9)
4.5.1 Angular momentum exchange
151(3)
4.5.2 Spin-orbit coupling
154(4)
4.5.3 Nuclear spin
158(2)
5 Optical pumping
160(43)
5.1 Principle and overview
160(3)
5.1.1 Phenomenology
160(1)
5.1.2 Historical
161(2)
5.2 Two-level ground states
163(11)
5.2.1 System
163(2)
5.2.2 Longitudinal pumping
165(1)
5.2.3 Relaxation effects
166(2)
5.2.4 Transverse pumping
168(3)
5.2.5 Light shift
171(3)
5.3 Modulated pumping
174(12)
5.3.1 Motivation
174(3)
5.3.2 Equation of motion
177(1)
5.3.3 Rotating frame
178(3)
5.3.4 Polarisation modulation
181(5)
5.4 Multilevel ground states
186(17)
5.4.1 Overview
186(1)
5.4.2 Hyperfine pumping
187(1)
5.4.3 Degenerate multilevel systems
188(3)
5.4.4 The sodium ground state
191(5)
5.4.5 Light shift and damping
196(2)
5.4.6 Diamagnetic ground states
198(2)
5.4.7 Spectral holeburning
200(3)
6 Optically anisotropic vapours
203(45)
6.1 Isotropic atoms
203(6)
6.1.1 The Lorentz-Lorenz model
203(4)
6.1.2 Semiclassical theory
207(2)
6.2 Anisotropic media
209(11)
6.2.1 Introduction
209(2)
6.2.2 System response
211(4)
6.2.3 Magnetooptic effects
215(5)
6.3 Propagation
220(10)
6.3.1 Eigenpolarisations of plane waves
220(3)
6.3.2 Arbitrary polarisation
223(3)
6.3.3 Coherent Raman scattering
226(2)
6.3.4 Transverse effects
228(2)
6.4 Polarisation-selective detection
230(18)
6.4.1 Fundamentals
230(5)
6.4.2 Detection schemes
235(4)
6.4.3 Observables in multilevel ground states
239(3)
6.4.4 The sodium ground state
242(6)
7 Coherent Raman processes
248(32)
7.1 Overview
248(8)
7.1.1 Raman processes
248(3)
7.1.2 Electronic structure of rare earth ions
251(1)
7.1.3 Nuclear spin states
252(4)
7.2 Frequency-domain experiments
256(7)
7.2.1 Spectral holeburning
256(2)
7.2.2 Raman heterodyne spectroscopy
258(3)
7.2.3 Triple resonance
261(2)
7.3 Time-resolved experiments
263(17)
7.3.1 Photon echo modulation
263(3)
7.3.2 Coherent Raman beats
266(3)
7.3.3 Time-domain spectroscopy
269(10)
7.3.4 Examples
279(1)
8 Sublevel dynamics
280(34)
8.1 Experimental arrangement
280(6)
8.1.1 General considerations
280(2)
8.1.2 Setup
282(2)
8.1.3 Historical overview
284(1)
8.1.4 Phenomenology
285(1)
8.2 Spin nutation
286(5)
8.2.1 Signal
286(2)
8.2.2 Experimental control
288(3)
8.3 Free induction decay
291(5)
8.3.1 Theory
291(3)
8.3.2 Experimental control
294(2)
8.4 Spin echoes
296(7)
8.4.1 Introduction
296(2)
8.4.2 Mechanism
298(2)
8.4.3 Control parameters
300(3)
8.5 Modulated excitation
303(5)
8.5.1 Laboratory-frame detection
303(2)
8.5.2 Phase-sensitive detection
305(2)
8.5.3 Frequency-domain experiments
307(1)
8.6 Time-domain spectroscopy
308(6)
8.6.1 Example
308(2)
8.6.2 Microscopic analysis
310(2)
8.6.3 Possible extensions
312(2)
9 Two-dimensional spectroscopy
314(40)
9.1 Fundamentals
314(10)
9.1.1 Motivation and principle
314(2)
9.1.2 Theoretical analysis
316(5)
9.1.3 Coherence transfer echoes
321(1)
9.1.4 Possible applications
322(2)
9.2 Coherence transfer
324(12)
9.2.1 Introduction
324(1)
9.2.2 Example
325(3)
9.2.3 System and Hamiltonian
328(2)
9.2.4 Light-induced dynamics
330(2)
9.2.5 Signal
332(4)
9.3 "Forbidden" multipoles
336(18)
9.3.1 Observables
336(3)
9.3.2 Rotations
339(7)
9.3.3 Separation of multipole orders
346(3)
9.3.4 Coherence transfer echoes
349(5)
10 Nonlinear dynamics
354(31)
10.1 Overview
354(7)
10.1.1 Resonant vapours as optically nonlinear media
354(3)
10.1.2 Wave mixing
357(2)
10.1.3 Coupled absorption
359(2)
10.2 Nonlinear propagation: self-focusing
361(13)
10.2.1 Light-induced waveguides
361(5)
10.2.2 Self-focusing
366(3)
10.2.3 Experimental observation
369(3)
10.2.4 Other structures
372(2)
10.3 Temporal instabilities
374(11)
10.3.1 Feedback
374(2)
10.3.2 Evolution
376(4)
10.3.3 Limit cycles
380(2)
10.3.4 Chaos
382(3)
11 Mechanical effects of light
385(38)
11.1 Light-induced forces
385(4)
11.1.1 Momentum conservation
386(2)
11.1.2 Optical potential
388(1)
11.2 Spontaneous forces
389(10)
11.2.1 Scattering force
389(3)
11.2.2 Doppler cooling
392(3)
11.2.3 Velocity diffusion
395(2)
11.2.4 Doppler limit
397(2)
11.3 Stimulated forces
399(10)
11.3.1 Gradient force
399(3)
11.3.2 Applications
402(4)
11.3.3 Rectified dipole force
406(3)
11.4 Forces on multilevel atoms
409(14)
11.4.1 Multilevel effects
409(3)
11.4.2 Magnetooptic traps
412(3)
11.4.3 Sisyphus cooling
415(2)
11.4.4 Stimulated magnetooptic force
417(2)
11.4.5 Raman transitions
419(4)
References 423(26)
Index 449

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program