did-you-know? rent-now

Rent More, Save More! Use code: ECRENTAL

did-you-know? rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9781119719601

Polymer Composites for Electrical Engineering

by ;
  • ISBN13:

    9781119719601

  • ISBN10:

    1119719607

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2021-11-01
  • Publisher: Wiley-IEEE Press
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $161.01 Save up to $0.16
  • Buy New
    $160.85
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Summary

Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field

Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials.

Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The books relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment.

Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include:

  • A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more)
  • Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications
  • A treatment of semi-conductive polymer composites for power cables
  • In-depth analysis of fire-retardant polymer composites for electrical engineering
  • An examination of polymer composite conductors

    Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.

  • Author Biography

    Xingyi Huang, PhD, is Professor and Deputy Director of the Shanghai Key Laboratory of Electrical Insulation and Thermal Aging at the Shanghai Jiao Tong University in China. He is an Associate Editor of IEEE Transactions on Dielectric and Electrical Insulation, as well as an Associate Editor of IEEE High Voltage.

    Toshikatsu Tanaka, PhD, is Chairman of the IEEJ Committee on New Dielectric Materials. He is Vice President of the Central Research Institute of the Electric Power Industry and is a recipient of the Japanese Ministry of Science and Technology Prize.

    Table of Contents

    Preface

     

    List of Contributors [TS please compiled List of contributors from these details/chapter openings; please exclude email addresses from the List of Contributors in the book]

     

    Chapter 1. Polymer composites for electrical energy storage

    Yao Zhou,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Email: ykz5390@psu.edu

     

    Chapter 2. Polymer composites for thermal energy storage

    Jie Yang, Chang-Ping Feng, Lu Bai, Rui-Ying Bao, Ming-Bo Yang, Wei Yang,College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, No. 24 South Section 1, Yihuan Road, Chengdu 610065, Sichuan, P. R. China; Corresponding authors’ e-mail addresses: slulu_1116@163.com (L Bai) and weiyang@scu.edu.cn (W Yang)

     

    Chapter 3. Polymer composites for high temperature applications

    Sen Niu, Lixue Zhu, Qiannan Cai, and Yunhe Zhang, Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education. College of Chemistry, Jilin University, Changchun, 130012, P. R. China. *Corresponding author.  zhangyunhe@jlu.edu.cn

     

    Chapter 4. Fire retardant polymer composites for electrical engineering

    Zhi Li, En Tang, Xue-Meng Cao, China-Spain Collaborative Research Center for Advanced Materials, School of Materials Science and Engineering, Chongqing Jiaotong University, 400074 Chongqing, China; Correspondence: zhi.li@cqjtu.edu.cn (Zhi Li)

     

    Chapter 5. Polymer composites for power cable insulation

    Yoitsu Sekiguchi, Sumitomo Electric Industries, Ltd., 1-1-3, Shimaya, Konohana-ku, Osaka, Japan, Zip Code: 5540024, Email: sekiguchi-youitsu@sei.co.jp

     

    Chapter 6. Semi-conductive polymer composites for power cables

    Zhonglei Li, Boxue Du, Yutong Zhao, and Tao Han, Key Laboratory of Smart Grid of Education Ministry, School of Electrical and Information Engineering, Tianjin University, 300072, Tianjin, China; *Corresponding Author:  Zhonglei Li; lizhonglei@tju.edu.cn

     

    Chapter 7. Polymer composites for electric stress control

    Dr. Muneaki Kurimoto, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan, Zip Code: 464-8603, Email: kurimoto@nuee.nagoya-u.ac.jp

     

    Chapter 8. Polymer composites for outer door insulation

    Wang xilin, Jia Zhidong, Wang Liming, Engineering Laboratory of Power Equipment Reliability in Complicated Coastal Environments, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Corresponding Author: Wang Xilin; wang.xilin@sz.tsinghua.edu.cn

     

    Chapter 9. Polymer composites for capacitors

    Shuhui Yu, Suibin Luo, Riming Wang, Rong Sun, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China sh.yu@siat.ac.cn

     

     

    Chapter 10. Polymer composites for motors and generators

    Dr. Hirotaka Muto, Mitsubishi Electric, 8-1-1 Tsukaguchihonmachi, Amagasaki-shi, Japan. Zip Code: 661-8661, Email: Muto.Hirotaka@da.MitsibishiElectric.co.jp

     

    Chapter 11. Polymer composite conductors and lightning damage

    Xueling Yao, School of Electrical Engineering, Xi’an Jiaotong University, Email: xlyao@mail.xjtu.edu.cn

     

    Chapter 12. Polymer composites for switchgears

    Takahiro Imai, Infrastructure Systems Research and Development Center, Toshiba Infrastructure Systems & Solutions Corporation, Toshiba-cho, Fuchu-shi, Tokyo 183-8511, Japan. Email takahiro2.imai@toshiba.co.jp

     

    Chapter 13. Glass fiber reinforced polymer composites for power equipment

    Dr. Yu Chen, School of Electrical Engineering, Xi’an Jiaotong University, Email: chenyu@xjtu.edu.cn

     

     

    Index

    Supplemental Materials

    What is included with this book?

    The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

    The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

    Rewards Program