did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780471007036

Practical HPLC Method Development

by ; ;
  • ISBN13:

    9780471007036

  • ISBN10:

    047100703X

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 1997-03-17
  • Publisher: Wiley-Interscience
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $242.07

Summary

Thoroughly revised and greatly expanded, the Second Edition of this landmark work brings scientists completely up to date on method development for HPLC, one of the main analytical techniques in use today. The authors, widely recognized as preeminent authorities in the field, offer the most far-reaching treatment available, taking into account advances in chromatography and the increasingly complex sample types that have become significant in the past decade.

Author Biography

Lloyd R. Snyder, PHD, is a Principal at LC Resources in Walnut Creek, California. He is the author or coauthor of several books including An Introduction to Separation Science, Introduction to Modern Liquid Chromatography, Second Edition, and the bestselling Practical HPLC Method Development, Second Edition, all published by Wiley.

Joseph J. Kirkland, PhD, is Vice President of Research and Development for Advanced Materials Technology, Inc., and coauthor of Introduction to Modern Liquid Chromatography, Second Edition, Practical HPLC Method Development, Second Edition, and Modern Size-Exclusion Liquid Chromatography, Second Edition, all published by Wiley.

Joseph L. Glajch is the author of Practical HPLC Method Development, Second Edition, published by Wiley.

Table of Contents

PREFACE xix(4)
GLOSSARY OF SYMBOLS AND TERMS xxiii
1 Getting Started
1(20)
1.1 Introduction
1(2)
1.2 What Is Known Before Starting
3(3)
1.2.1 Nature of the Sample
3(2)
1.2.2 Separation Goals
5(1)
1.3 Sample Pretreatment and Detection
6(1)
1.4 Developing the Separation
7(10)
1.4.1 Selecting an HPLC Method and Initial Conditions
7(3)
1.4.2 Getting Started on Method Development
10(3)
1.4.3 Improving the Separation
13(3)
1.4.4 Repeatable Separation
16(1)
1.5 Completing the HPLC Method
17(3)
1.5.1 Quantitation and Method Validation
17(1)
1.5.2 Checking for Problems
18(1)
1.5.3 Method Ruggedness
19(1)
References
20(1)
2 Basics of Separation
21(38)
2.1 Introduction
21(1)
2.2 Resolution: General Considerations
22(5)
2.2.1 Measurement of Resolution
22(3)
2.2.2 Minimum Resolution
25(2)
2.3 Resolution as a Function of Conditions
27(23)
2.3.1 Effect of Solvent Strength
31(3)
2.3.2 Effect of Selectivity
34(1)
2.3.2.1 Changes in the Mobile Phase
34(6)
2.3.2.2 Changes in the Column
40(1)
2.3.2.3 Changes in Temperature
40(1)
2.3.3 Effect of Column Plate Number
41(2)
2.3.3.1 Column Conditions and Separation
43(3)
2.3.3.2 Plate Number as a Function of Conditions
46(1)
2.3.3.3 Extra-column Effects
47(3)
2.4 Sample-Size Effects
50(7)
2.4.1 Volume Overload: Effect of Sample Volume on Separation
51(2)
2.4.2 Mass Overload: Effect of Sample Weight on Separation
53(3)
2.4.3 Avoiding Problems Due to Too Large a Sample Size
56(1)
2.4.3.1 Higher-Than-Expected Sample Concentrations
56(1)
2.4.3.2 Trace Analysis
56(1)
References
57(2)
3 Detection Sensitivity and Selectivity
59(41)
3.1 Introduction
59(1)
3.2 UV Detection
60(20)
3.2.1 General Considerations
60(3)
3.2.2 Choice of Wavelength
63(1)
3.2.2.1 Sample Absorbance as a Function of Molecular Structure
63(3)
3.2.2.2 Mobile-Phase Absorbance as a Function of Composition
66(5)
3.2.3 Signal, Noise, and Assay Precision
71(2)
3.2.4 Maximizing Signal/Noise Ratio for Better Assay Precision
73(3)
3.2.5 Detector Linearity
76(1)
3.2.6 Diode-Array UV Detectors
77(3)
3.3 Other HPLC Detectors
80(17)
3.3.1 Universal Detection
80(1)
3.3.2 Fluorescence Detection
81(3)
3.3.3 Electrochemical Detection
84(5)
3.3.4 Mass Spectrometer Detection (LC-MS)
89(2)
3.3.4.1 Mass Analyzers
91(1)
3.3.4.2 Ionization Methods
92(3)
3.3.5 Selecting the Mass Spectrometric Detector
95(1)
3.3.6 Less Common Detectors
96(1)
References
97(3)
4 Sample Preparation
100(74)
4.1 Introduction
101(2)
4.2 Types of Samples
103(1)
4.3 Preliminary Processing of Solid and Semi-solid Samples
103(7)
4.3.1 Reducing Sample Particle Size
103(5)
4.3.2 Drying the Sample
108(1)
4.3.3 Filtration
108(2)
4.4 Sample Pretreatment for Liquid Samples
110(34)
4.4.1 Liquid-Liquid Extraction
110(2)
4.4.1.1 Theory
112(2)
4.4.1.2 Practice
114(3)
4.4.1.3 Problems
117(2)
4.4.2 Solid-Phase Extraction
119(1)
4.4.2.1 SPE vs. LLE
119(1)
4.4.2.2 SPE vs. HPLC
120(1)
4.4.2.3 Uses of SPE
120(1)
4.4.2.4 SPE Devices
121(4)
4.4.2.5 SPE Apparatus
125(2)
4.4.2.6 SPE Method Development
127(12)
4.4.2.7 Column Chromatography for Sample Pretreatment
139(1)
4.4.3 Membrance Separations
139(5)
4.5 Sample Pretreatment for Solid Samples
144(10)
4.5.1 Traditional Extraction Methods
145(2)
4.5.2 Newer Extraction Methods
147(1)
4.5.2.1 Supercritical Fluid Extraction
147(4)
4.5.2.2 Microwave-Assisted Solvent Extraction
151(2)
4.5.2.3 Accelerated Solvent Extraction
153(1)
4.5.3 Comparison of Methods for Extraction of Solids
154(1)
4.6 Column Switching
154(7)
4.6.1 Principle of Operation
158(2)
4.6.2 Developing a Column-Switching Method: General Considerations
160(1)
4.6.3 Examples of Column Switching for Sample Cleanup
160(1)
4.7 Derivatization
161(9)
4.7.1 Detectability
163(2)
4.7.1.1 UV Detection
165(1)
4.7.1.2 Fluorescence Detection
165(2)
4.7.2 Pre-and Post-column Derivatization
167(1)
4.7.2.1 Pre-column Derivatization
167(1)
4.7.2.2 Post-column Derivatization
168(1)
4.7.3 Chiral Analysis by Derivatization
169(1)
References
170(4)
5 The Column
174(59)
5.1 Introduction
175(1)
5.2 Characterstics of Columns and Column Packings
175(30)
5.2.1 Column-Packing Particles
175(3)
5.2.1.1 Silica Packing Particles
178(4)
5.2.1.2 Porous Polymers
182(2)
5.2.1.3 Other Inorganic Supports
184(2)
5.2.2 Column Configuration
186(3)
5.2.3 Stationary Phases
189(1)
5.2.3.1 Bonded Silances
189(3)
5.2.3.2 Other Stationary Phases
192(1)
5.2.3.3 Retention of the Bonded Phase in RPC
192(1)
5.2.3.4 Stability of Bonded-Phase Columns
193(10)
5.2.4 Sources of Retention and Selectivity Variability
203(2)
5.3 Column Specifications
205(9)
5.3.1 Plate Number
205(3)
5.3.2 Peak Asymmetry and Peak Tailing
208(2)
5.3.3 Column Failure: How Long Should a Column Last?
210(2)
5.3.4 Retention Reproductivity
212(1)
5.3.5 Pressure Drop
212(1)
5.3.6 Bonded-Phase Concentration (Coverage)
213(1)
5.4 Column Problems and Remedies
214(16)
5.4.1 Retention and Resolution Irreproducibility
214(5)
5.4.2 Band Tailing
219(4)
5.4.3 Why Do Columns Die?
223(1)
5.4.3.1 Column Frit Problems
224(1)
5.4.3.2 Strongly Held Sample Components
225(1)
5.4.3.3 Poorly Packed Columns
226(1)
5.4.3.4 Pressure Effects
226(1)
5.4.3.5 Chemical Attack
227(1)
5.4.3.6 Other Factors
227(2)
5.4.4 Suggested Column for Method Development
229(1)
References
230(3)
6 Non-ionic Samples: Reversed-and Normal-Phase HPLC
233(1)
6.1 Introduction
234(1)
Part I: Reversed-Phase Chromatography 234(32)
6.2 Retention in Reversed-Phase Chromatography
235(7)
6.2.1 Mobile-Phase Effects
236(1)
6.2.1.1 Choice of % B
237(2)
6.2.1.2 Mobile-Phase Strength
239(1)
6.2.2 Column and Temperature Effects
240(2)
6.3 Selectivity in Reversed-Phase Chromatography
242(10)
6.3.1 Solvent-Strength Selectivity
242(2)
6.3.2 Solvent-Type Selectivity
244(4)
6.3.3 Column-Type Selectivity
248(3)
6.3.4 Temperature Selectivity
251(1)
6.4 Optimizing the Separation of Non-ionic Samples in Reversed-Phase Chromatography
252(12)
6.4.1 Getting Started
253(1)
6.4.2 Optimizing Selectivity
254(1)
6.4.2.1 Solvent Strength (% B) Effects
255(1)
6.4.2.2 Solvent-Type Effects Plus % B Effects
255(2)
6.4.2.3 Use of Organic Solvent Mixtures
257(3)
6.4.2.4 Column-Type Effects Plus % B Effects
260(1)
6.4.2.5 Combined Use of Different Solvents Plus Column Types
260(4)
6.5 Non-aqucous Reversed-Phase HPLC
264(2)
Part II: Normal-Phase Chromatography 266(26)
6.6 Retention and Selectivity in Normal-Phase Chromatography
268(14)
6.6.1 General Aspects
268(1)
6.6.1.1 Sample and Solvent Localization
269(2)
6.6.2 Mobile-Phase Effects
271(1)
6.6.2.1 Solvent Strength
271(2)
6.6.2.2 Mobile-Phase Selectivity
273(3)
6.6.3 Column-Type Effects
276(2)
6.6.4 Temperature Effects
278(1)
6.6.5 Use of Aqueous Mobile Phases for Hydrophilic Samples
278(4)
6.7 Optimizing the Separation of Non-ionic Samples in Normal-Phase Chromatography
282(7)
6.7.1 Initial Conditions
282(1)
6.7.1.1 Choice of Column
282(2)
6.7.1.2 Mobile Phase Solvents
284(1)
6.7.2 Adjusting Retention
284(1)
6.7.3 Optimizing Selectivity
285(2)
6.7.4 Other Considerations
287(1)
6.7.4.1 Slow Column Equilibration and Solvent Demixing
287(1)
6.7.4.2 Changes in Stationary-Phase Water Content
288(1)
References
289(3)
7 Ionic Samples: Reversed-Phase, Ion-Pair, and Ion-Exchange HPLC
292(58)
7.1 Introduction
293(1)
7.2 Acidic and Basic Samples
294(9)
7.2.1 Acid-Base Equilibria and Reversed-Phase Retention
294(2)
7.2.2 Choice of Buffers
296(1)
7.2.2.1 Buffer Capacity
297(3)
7.2.2.2 Buffer UV Absorbance
300(1)
7.2.2.3 Other Buffer Properties
300(1)
7.2.2.4 Preferred Buffers
301(1)
7.2.3 pKa as a Function of Compound Structure
301(1)
7.2.3.1 Preferred Mobile-Phase pH
302(1)
7.2.4 Which HPLC Method is Best for Ionic Samples?
303(1)
7.3 Optimizing the Reversed-Phase Separation of Ionic Samples
303(14)
7.3.1 Initial Experiments
303(1)
7.3.2 Controlling Selectivity
304(1)
7.3.2.1 pH
305(2)
7.3.2.2 Solvent Strength (% B)
307(1)
7.3.2.3 Solvent Type
307(1)
7.3.2.4 Temperature
308(1)
7.3.2.5 Buffer Concentration
309(1)
7.3.2.6 Amine Modifiers
309(2)
7.3.2.7 Column Type
311(1)
7.3.3 Special Problems
311(1)
7.3.3.1 pH Sensitivity
311(1)
7.3.3.2 Silanol Effects
311(2)
7.3.3.3 Temperature Sensitivity
313(1)
7.3.4 Summary
313(4)
7.4 Ion-Pair Chromatography
317(24)
7.4.1 Basis of Retention
318(1)
7.4.1.1 pH and Ion Pairing
318(2)
7.4.1.2 Ion-Pair Reagent Concentration
320(2)
7.4.1.3 Ion-Pair Reagent Type
322(2)
7.4.2 Initial Experiments
324(3)
7.4.3 Controlling Retention Range and Selectivity: Changes in % B, pH, and Ion-Pair Reagent Concentration
327(1)
7.4.3.1 Retention Range
327(1)
7.4.3.2 Selectivity
328(4)
7.4.4 Other Changes in Selectivity
332(1)
7.4.4.1 Solvent Strength (% B)
332(1)
7.4.4.2 Temperature
333(1)
7.4.4.3 Buffer Concentration
333(1)
7.4.4.4 Solvent Type
333(4)
7.4.4.5 Buffer Type or Added Salt
337(1)
7.4.4.6 Amine Modifiers
337(1)
7.4.5 Special Problems
337(1)
7.4.5.1 Artifactual Peaks
337(1)
7.4.5.2 Slow Column Equilibration
338(1)
7.4.5.3 Poor Peak Shape
339(1)
7.4.6 Summary
339(2)
7.5 Ion-Exchange Chromatography
341(5)
7.5.1 Basis of Retention
342(1)
7.5.1.1 pH Effects
343(1)
7.5.1.2 Salt or Buffer Type
343(1)
7.5.1.3 Organic Solvents
343(1)
7.5.1.4 Column Type
343(1)
7.5.2 Method Development
344(1)
7.5.3 Mixed-Mode Separations
344(2)
7.5.4 Silica Columns
346(1)
References
346(4)
8 Gradient Elution
350(52)
8.1 Introduction
351(1)
8.2 Applications of Gradient Elution
352(11)
8.2.1 Gradient Elution for Routine Analysis
353(1)
8.2.1.1 Sample Retention Range
353(1)
8.2.1.2 High-Molecular-Weight Sample Components
353(3)
8.2.1.3 Late Eluters
356(1)
8.2.1.4 Maximizing Detection Sensitivity
356(1)
8.2.1.5 Dilute Sample Solutions
356(2)
8.2.1.6 Alternatives to Gradient Elution
358(1)
8.2.2 Gradient Elution for Method Development
359(1)
8.2.2.1 Isocratic or Gradient Separation?
359(3)
8.2.2.2 Estimating the Best Isocratic Conditions
362(1)
8.2.2.3 Estimating the Best Gradient Conditions
362(1)
8.3 Principles of Gradient Elution
363(11)
8.3.1 Gradient vs. Isocratic Elution
365(2)
8.3.2 Effect of Gradient Steepness
367(1)
8.3.3 Effect of Gradient Range
367(5)
8.3.4 Effect of Gradient Shape
372(1)
8.3.4.1 Homologous or Oligomeric Samples
372(2)
8.3.4.2 Chromatograms with Peak Bunching
374(1)
8.4 Developing a Gradient Separation
374(11)
8.4.1 Selecting Gradient Conditions
376(1)
8.4.1.1 Gradient Steepness
376(1)
8.4.1.2 Gradient Range
376(1)
8.4.1.3 Gradient Shape
377(1)
8.4.2 Varying Band Spacing
377(1)
8.4.2.1 Gradient Steepness
377(3)
8.4.2.2 Solvent Type
380(1)
8.4.2.3 Other Variables
380(2)
8.4.3 Adjusting Column Conditions
382(3)
8.5 Experimental Considerations
385(12)
8.5.1 Effect of Equipment on Separation: System Dwell Volume
386(1)
8.5.1.1 Equipment Differences
386(1)
8.5.1.2 Changes in Separation for Different HPLC Systems
387(3)
8.5.1.3 Minimizing the Effect of Equipment Dwell Volume
390(2)
8.5.1.4 Determining the Dwell Volume
392(2)
8.5.2 Reproducible Separation
394(1)
8.5.2.1 Column Regeneration
394(1)
8.5.2.2 Column Equilibration
394(1)
8.5.2.3 Inaccurate Gradients
395(1)
8.5.3 Baseline Problems
396(1)
8.5.3.1 Drift
396(1)
8.5.3.2 Artifactual Bands
397(1)
8.6 Summary of Gradient Elution Method Development
397(3)
8.6.1 Systematic Approach
397(2)
8.6.2 Computer Simulation
399(1)
References
400(2)
9 Systematic Approach to the Reversed-Phase Separation of Regular Samples
402(37)
9.1 Introduction
403(7)
9.1.1 Some Guiding Principles
405(1)
9.1.1.1 Classifying the Sample
406(1)
9.1.1.2 Initial Separation Conditions: The Column and Flow Rate
406(1)
9.1.1.3 Initial Separation Conditions: The Mobile Phase
407(1)
9.1.1.4 Other Initial Separation Conditions
408(1)
9.1.1.5 Ensuring Accurate Retention Data
408(1)
9.1.1.6 Confirming Good Column Performance
409(1)
9.1.1.7 Peak Tracking
410(1)
9.2 Getting Started
410(10)
9.2.1 Initial Conditions
410(1)
9.2.2 Adjusting the Retention Range
411(1)
9.2.2.1 Isocratic Separation
411(3)
9.2.2.2 Gradient Separation
414(2)
9.2.2.3 Early or Late Eluters
416(1)
9.2.2.4 Very Hydrophobic Cations
416(1)
9.2.2.5 Complex Samples
417(1)
9.2.2.6 No Real Peaks
418(1)
9.2.3 Evaluating Peak Shape and Plate Number
418(2)
9.3 Completing Isocratic Method Development
420(11)
9.3.1 Optimizing Retention and Selectivity
420(2)
9.3.1.1 Sample A: An Easy Separation
422(1)
9.3.1.2 Sample B: A Typical Separation
422(2)
9.3.1.3 Sample C: A Difficult Separation
424(2)
9.3.1.4 Further Improvements in Separation
426(3)
9.3.1.5 Changing the Method for Later Samples or Applications
429(1)
9.3.2 Optimizing Column Conditions
430(1)
9.4 Alternative To Completing Isocratic Method Development
431(2)
9.5 Completing Gradient Method Development
433(4)
References
437(2)
10 Computer-Assisted Method Development
439(40)
10.1 Introduction
439(2)
10.1.1 Summary of Commercial Method-Development Software
440(1)
10.2 Computer-Simulation Software (DryLab)
441(14)
10.2.1 Isocratic Separation Varying % B and Column Conditions
443(2)
10.2.1.1 Use of Other Variables for Changing Selectivity
445(3)
10.2.2 Gradient Separations
448(4)
10.2.2.1 Segmented Gradients
452(1)
10.2.2.2 Other Applications
452(3)
10.3 Software for Solvent-Type Optimization (ICOS, DIAMOND)
455(3)
10.4 Grid-Search Software (PESOS)
458(5)
10.5 Structure-Based Predictive Software
463(4)
10.5.1 ELUEX
463(2)
10.5.2 CHROMDREAM
465(1)
10.5.3 Special-Purpose Programs
465(2)
10.6 Method Ruggedness
467(3)
10.7 Peak Tracking
470(5)
10.7.1 Injection of Standards
470(2)
10.7.2 Retention and Area Comparisons
472(1)
10.7.3 Trends in Retention
473(1)
10.7.4 Spectral Identification
473(2)
10.8 Pitfalls
475(1)
References
476(3)
11 Biochemical Samples: Proteins, Nucleic Acids, Carbohydrates, and Related Compounds
479(58)
11.1 Introduction
480(17)
11.1.1 Primary Structure
482(1)
11.1.1.1 Peptides and Proteins
482(3)
11.1.1.2 Oligonucleotides and Nucleic Acids
485(3)
11.1.1.3 Modified Oligonucleotides
488(1)
11.1.2 Special Requirements of Biochemical HPLC
488(1)
11.1.2.1 Columns
488(4)
11.1.2.2 Sample Molecular Conformation
492(2)
11.1.2.3 Sample Recovery: Mass and Bioactivity
494(1)
11.1.2.4 Sample Handling and Pretreatment
495(2)
11.1.2.5 Sample Detection
497(1)
11.2 Separation of Peptide and Protein Samples
497(22)
11.2.1 Reversed-Phase HPCL
497(1)
11.2.1.1 Preferred Conditions for an Initial Separation
498(4)
11.2.1.2 Variables for Changing Selectivity
502(5)
11.2.1.3 Common Problems and Remedies
507(2)
11.2.2 Ion-Exchange HPLC
509(3)
11.2.2.1 Preferred Conditions for an Initial Separation
512(3)
11.2.2.2 Variables for Changing Selectivity
515(1)
11.2.2.3 Common Problems and Remedies
515(1)
11.2.3 Hydrophobic Interaction Chromatography
516(1)
11.2.3.1 Preferred Conditions for HIC Separation
517(2)
11.3 Separation of Oligonucleotides
519(4)
11.3.1 Ion-Pair HPLC
520(1)
11.3.2 Ion-Exchange HPLC
521(2)
11.4 Size-Exclusion Chromatography
523(10)
11.4.1 The Basis of SEC Retention
523(5)
11.4.2 Applications
528(2)
11.4.3 Preferred Conditions for an SEC Separation
530(1)
11.4.4 Common Problems and Remedies
531(2)
11.4.5 Protein Folding
533(1)
References
533(4)
12 Chiral Separations
537(79)
12.1 Introduction
538(10)
12.1.1 Chiral Derivatization
540(1)
12.1.2 Chiral Mobile-Phase Additives
540(1)
12.1.3 Chiral Stationary Phases
541(1)
12.1.4 Principles of Chiral Recognition
542(4)
12.1.5 General Considerations for Chiral HPLC Method Development
546(1)
12.1.5.1 Sample Information
546(1)
12.1.5.2 Preparative Separations
547(1)
12.1.6 Selecting a Chiral Column
547(1)
12.2 Protein-Derived Chiral Stationary Phases for HPLC
548(20)
12.2.1 Introduction
548(1)
12.2.2 Background
548(2)
12.2.3 Mechanism of Chiral Interactions
550(1)
12.2.4 Characteristics of Protein-Based Chiral Columns
550(2)
12.2.5 Adjusting Retention and Selectivity with the Mobile Phase
552(2)
12.2.5.1 Organic Mobile-Phase Modifiers
554(1)
12.2.5.2 pH, Ionic Strength, and Ion-Pairing Effects
555(4)
12.2.6 Experimental Parameters
559(1)
12.2.6.1 Mobile-Phase Effects
559(2)
12.2.6.2 Sample Loading and Injection
561(1)
12.2.6.3 Column Temperature
561(1)
12.2.6.4 Column Configuration
561(2)
12.2.6.5 Column Care and Stability
563(1)
12.2.7 Application and Special Techniques
563(4)
12.2.8 Systematic Method Development
567(1)
12.3 Polysaccharide (Carbohydrate) Columns
568(17)
12.3.1 Introduction
568(1)
12.3.2 Properties of Commercial Polysaccharide Phases
568(1)
12.3.2.1 General Characteristics
568(2)
12.3.2.2 Availability
570(2)
12.3.3 Mechanism of Chiral Interactions
572(4)
12.3.4 Experimental Parameters
576(1)
12.3.4.1 Mobile-Phase Selection
576(3)
12.3.4.2 Temperature and Pressure Effects
579(1)
12.3.4.3 Column Configuration and Operation
579(2)
12.3.4.4 Sample Size
581(1)
12.3.5 Applications
581(1)
12.3.6 Strategy for Method Development
581(4)
12.4 Donor-Acceptor (Pirkle) Columns
585(15)
12.4.1 Introduction
585(1)
12.4.2 Properties of Commercial Donor-Acceptor CSPs
586(2)
12.4.3 Mobile-Phase Conditions
588(3)
12.4.3.1 Solvents
591(1)
12.4.4 Method Development with Pirkle CSPs
591(1)
12.4.4.1 Column
591(1)
12.4.4.2 Mobile Phase
591(1)
12.4.4.3 Derivatization
592(2)
12.4.4.4 Effects of Temperature and Flow Rate
594(6)
12.5 Cavity-Type Columns
600(13)
12.5.1 Introduction
600(4)
12.5.2 Method Development for Separation Using Underivatized CD Columns
604(1)
12.5.2.1 Separation Modes
604(1)
12.5.2.2 Reversed-Phase Mode
604(4)
12.5.2.3 Polar-Organic and Normal-Phase Modes
608(2)
12.5.3 Method Development with Derivatized Cyclodextrins
610(3)
References
613(3)
13 Preparative HPLC Separation
616(27)
13.1 Introduction
616(2)
13.2 Developing a Preparative HPLC Separation
618(9)
13.2.1 General Considerations
618(3)
13.2.2 Effect of Sample Size: Touching-Band Separation
621(1)
13.2.3 Optimizing Conditions for Preparative HPLC
622(3)
13.2.4 Gradient Separations
625(2)
13.2.5 Trace Recovery
627(1)
13.3 Practical Aspects of Preparative HPLC
627(1)
13.3.1 Sample Solubility
627(1)
13.3.2 Equipment Requirements
628(1)
13.4 Quantitative Prediction of Preparative HPLC Separation
628(8)
13.4.1 General Relationships
629(2)
13.4.2 Column Saturation Capacity
631(1)
13.4.3 Gradient Elution Separations
631(1)
13.4.4 Heavily Overloaded Separations
632(2)
13.4.5 Unusual Isotherm Behavior
634(2)
13.5 Summary and Example of Method Development for Preparative HPLC
636(5)
13.5.1 Process-Scale HPLC Separations
640(1)
References
641(2)
14 Quantitation (Including Trace Analysis)
643(42)
14.1 Introduction
643(4)
14.1.1 Accuracy, Precision, and Linearity
644(1)
14.1.2 Limits of Detection and Quantitation
645(2)
14.2 Measurement of Signals
647(6)
14.2.1 Noise
647(2)
14.2.2 Peak Height
649(1)
14.2.3 Peak Area
650(2)
14.2.4 Peak Height vs. Peak Area for Quantitation
652(1)
14.3 Quantitation Methods
653(7)
14.3.1 Normalized Peak Area
654(1)
14.3.2 External Standard Calibration
655(2)
14.3.3 Internal Standard Calibration
657(3)
14.3.4 Method of Standard Addition
660(1)
14.4 Sources of Error in Quantitation
660(6)
14.4.1 Sampling and Sample Preparation
662(1)
14.4.2 Chromatographic Effects
663(2)
14.4.3 Data System Effects
665(1)
14.5 Trace Analysis
666(17)
14.5.1 Sample Preparation
666(1)
14.5.2 Column Resolution
667(6)
14.5.3 Sample Injection
673(3)
14.5.4 Detection
676(2)
14.5.5 Calibration
678(2)
14.5.6 General Strategy
680(3)
References
683(2)
15 Completing the Method: Validation and Transfer
685(29)
15.1 Introduction
686(1)
15.1.1 General Approach to Method Validation
686(1)
15.2 Accuracy
687(3)
15.2.1 Comparison to a Standard
688(1)
15.2.2 Analyte Recovery
688(1)
15.2.3 Method of Standard Addition
689(1)
15.3 Precision
690(1)
15.4 Linearity
691(3)
15.5 Range
694(1)
15.6 Limit of Detection and Limit of Quantitation
695(1)
15.7 Specificity
695(6)
15.7.1 Spiking of Potential Interferents
697(1)
15.7.2 Sample Degradation
697(1)
15.7.3 Peak Collection and Analysis
698(1)
15.7.4 Additional On-Line Detection
698(2)
15.7.5 Chromatographic Cross-Check
700(1)
15.7.6 Changing HPLC Conditions
700(1)
15.8 Ruggedness
701(1)
15.9 Robustness
702(2)
15.10 Stability
704(1)
15.11 System Suitability
705(1)
15.12 Documentation of Validation Results and the Final Method
706(1)
15.13 Interlaboratory Crossover Studies (Transferability)
707(5)
15.13.1 Determining Equivalence
708(4)
15.14 Method Validation Protocol
712(1)
References
712(2)
Appendix I Plate Number and Resolution 714(7)
Appendix II Properties of Solvents Used in HPLC 721(8)
Appendix III Retention in Reversed-Phase and Normal-Phase HPLC as a Function of Sample Molecular Structure 729(6)
Appendix IV Preparing Buffered Mobile Phases 735(5)
Appendix V Characterizing the Differences Among C(8) or C(18) Reversed-Phase Columns from Different Suppliers 740(4)
Appendix VI Adjusting Mobile-Phase Water Content for Normal-Phase HPLC 744(3)
Index 747

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program