rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780375423147

Proving Darwin : Making Biology Mathematical

by
  • ISBN13:

    9780375423147

  • ISBN10:

    0375423141

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2012-05-08
  • Publisher: Pantheon
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $24.00

Summary

Groundbreaking mathematician Gregory Chaitin gives us the first book to posit that we can prove that evolution works on a mathematical level. For years it has been received wisdom among most scientists that, just as Darwin claimed, all of the Earth's life forms evolved by blind chance. But does Darwin's theory function on a purely mathematical level? It's a question no one has yet answered-in fact, no one has attempted to answer it until now. In this illuminating and provocative book, Gregory Chaitin argues that we can't be sure evolution makes sense withouta mathematical theory, and he goes on to elucidate the mathematical scheme he's developed that can explain life itself. He also explores metabiology, a new way of thinking about biological science that highlights the mathematical structures underpinning the biological world. In doing so, Chaitin makes clear how biology may have found its greatest ally in mathematics.

Table of Contents

A Parablep. iii
Contradictory Quotes?p. vii
Problem Solvers and Theorizers, by Gian-Carlo Rotap. xi
Prefacep. xv
Introduction: Overview of Proving Darwinp. 3
Life as Evolving Software: The Evolution of Mutating Softwarep. 9
The Human Discovery of Software: Turing and von Neumann as Biologistsp. 23
The Mathematics of Metabiology: Random Walks in Software Spacep. 39
Santa Fe Institute Lecture: A Mathematical Theory of Evolution and Biological Creativityp. 53
Theological Aspects of Metabiologyp. 73
The Politics of Creativity (Social Darwinism → Social Metabiology)p. 79
What Can Mathematics Ultimately Accomplish? Metabiology and Beyondp. 87
Von Neumann's "DNA = Software" Paperp. 97
The Heart of the Proofp. 111
Further Readingp. 115
Indexp. 117
Table of Contents provided by Ingram. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

One
Introduction: Overview of Proving Darwin
 
Like many pure mathematicians, I like giving “chalk” talks: improvised talks given on a blackboard or white- board using a minimum of technological assistance. Another strategy is for me to fill the board with what I want to cover just before I start to lecture, while people are still coming in, so that they can take in all the key ideas at a glance. In a large auditorium, however, a projector is necessary, or nobody will see anything.
 
On the facing page you can see me giving an overview of this book in a large auditorium at the Federal University of Rio Grande do Sul in southern Brazil. The four slides I prepared are on pages 5 and 6. They summarize Chapters 2 to 4, which outline my strategy for making biology mathematical. After you finish reading these chapters, you should review the slides. Then they will make more sense.
 
You’ve heard people refer to DNA as a computer program? Well, that’s the whole idea: to make this metaphor into a mathematical theory of evolution. In fact, it turns out that the mathematical tools for doing this were already available in the 1970s. More precisely, we will treat evolution as a random walk in software space. Random walks are an idea that mathematicians feel comfortable with, although the space we are walking around in at random is bigger than usual.
 
I call this proposed new field “metabiology” because it is a highly simplified version of real biology—otherwise I wouldn’t be able to prove any theorems. These theorems are presented in Chapter 5, which is the climax of the book, and was a talk that I gave at the Santa Fe Institute. Chapters 6 to 8 discuss the broader significance of metabiology, theological, political and epistemological. And then there are two appendices.
 
In the first appendix you can read the crucial section on self-reproducing automata in John von Neumann’s far-seeing “DNA = Software” paper that influenced Sydney Brenner, who in turn influenced Francis Crick—a remarkable fact that I only discovered while working on this book. And the second appendix gives some additional mathematical details that may be of interest to experts.
 
Finally, I give a short list of suggested further reading, some books and a few articles that are important if you want to really understand metabiology. These are the books and articles that helped me the most to come up with a strategy for making biology mathematical, plus a few more related items that I threw in just for the fun of it. Enjoy them all!

Rewards Program