did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780023669217

Laser Engineering

by
  • ISBN13:

    9780023669217

  • ISBN10:

    0023669217

  • Edition: 1st
  • Format: Paperback
  • Copyright: 1997-12-04
  • Publisher: Pearson

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $206.64 Save up to $51.66
  • Buy Used
    $154.98
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Summary

Presents fundamental principles of lasers immediately relevant to lasers in practice. Balancing theory with engineering examples from well-established laser companies, the book provides an important and practical design resource.Using actual laser systems from major companies as examples, the book provides an opportunity to apply skills. The book also introduces non-linear optics and covers important support technologies. It also incorporates material on basic laser safety and summarizes basic optics commonly used in laser engineering.A valuable reference book for practicing electrical engineers working with lasers.

Table of Contents

PREFACE xi
Organization xi(1)
Technical Background xii(1)
Pedagogy xii(1)
Scheduling xiii(1)
Acknowledgments xiv
Part I Laser Fundamentals 1(272)
1 INTRODUCTION TO LASERS
2(32)
1.1 A Brief History
2(3)
1.2 The Laser Market
5(4)
1.3 Energy States in Atoms
9(1)
1.4 Basic Stimulated Emission
10(4)
1.4.1 Transitions Between Laser States
10(3)
1.4.2 Population Inversion
13(1)
1.5 Power and Energy
14(1)
1.6 Monochromaticity, Coherency, and Linewidth
15(3)
1.7 Spatial Coherence and Laser Speckle
18(1)
1.8 The Generic Laser
19(1)
1.9 Transverse and Longitudinal Modes
20(2)
1.10 The Gain Profile
22(2)
1.11 Laser Safety
24(1)
Symbols Used in the Chapter
25(1)
Exercises
26(8)
2 ENERGY STATES AND GAIN
34(28)
2.1 Energy States
35(8)
2.1.1 Laser States
35(1)
2.1.2 Multiple-State Laser Systems
36(3)
2.1.3 Linewidth and the Uncertainty Principle
39(2)
2.1.4 Broadening of Fundamental Linewidths
41(2)
2.2 Gain
43(15)
2.2.1 Basics of Gain
43(4)
2.2.2 Blackbody Radiation
47(8)
2.2.3 Gain
55(3)
Symbols Used in the Chapter
58(1)
Exercises
59(3)
3 THE FABRY-PEROT ETALON
62(21)
3.1 Longitudinal Modes in the Laser Resonant Cavity
62(3)
3.1.1 Using an Etalon for Single Longitudinal Mode Operation
64(1)
3.2 Quantitative Analysis of a Fabry-Perot Etalon
65(8)
3.2.1 Optical Path Relations in a Fabry-Perot Etalon
65(2)
3.2.2 Reflection and Transmission Coefficients in a Fabry-Perot Etalon
67(3)
3.2.3 Calculating the Reflected and Transmitted Intensities for a Fabry-Perot Etalon with the Same Reflectances
70(2)
3.2.4 Calculating the Reflected and Transmitted Intensities for a Fabry-Perot Etalon with Different Reflectances
72(1)
3.2.5 Calculating the Q and the Finesse of a Fabry-Perot Etalon
73(1)
3.3 Illustrative Fabry-Perot Etalon Calculations
73(5)
Symbols Used in the Chapter
78(1)
Exercises
79(4)
4 TRANSVERSE MODE PROPERTIES
83(48)
4.1 Introduction
84(1)
4.2 TEMx,y Transverse Modes
84(4)
4.2.1 The Paraxial Approximation
84(2)
4.2.2 Mathematical Treatment of the Transverse Modes
86(2)
4.3 TEMo,o Gaussian Beam Propagation
88(13)
4.3.1 The TEMo,o or Gaussian Transverse Mode
88(6)
4.3.2 Properties of the TEMo,o Mode of the Laser
94(7)
4.4 Ray Matrices to Analyze Paraxial Lens Systems
101(9)
4.4.1 Ray Matrix for a Distance d
103(1)
4.4.2 Ray Matrix for a Lens
104(4)
4.4.3 ABCD Law Applied to Simple Lens Systems
108(2)
4.5 Gaussian Beams in Resonant Cavities
110(12)
4.5.1 Modeling the Stability of the Laser Resonator
113(4)
4.5.2 ABCD Law Applied to Resonators
117(5)
Symbols Used in the Chapter
122(2)
Exercises
124(7)
5 GAIN SATURATION
131(32)
5.1 Saturation of the Exponential Gain Process
131(4)
5.1.1 Gain Saturation for the Homogeneous Line
134(1)
5.1.2 Gain Saturation for the Inhomogeneous Line
134(1)
5.1.3 The Importance of Rate Equations
134(1)
5.2 Setting Up Rate Equations
135(7)
5.2.1 Rate Equations for Four-State Lasers
137(5)
5.3 Laser Output Power Characteristics
142(17)
5.3.1 Optimal Coupling, a Simple Approach
142(5)
5.3.2 Pout versus Pin, an Engineering Approach
147(5)
5.3.3 Pout versus Pin, the Rigrod Approach
152(7)
Symbols Used in the Chapter
159(2)
Exercises
161(2)
6 TRANSIENT PROCESSES
163(44)
6.1 Relaxation Oscillations
164(13)
6.1.1 A Qualitative Description of Relaxation Oscillations
164(1)
6.1.2 Numerical Modeling of Relaxation Oscillations
165(6)
6.1.3 Analytical Treatment of Relaxation Oscillations
171(6)
6.2 Q-Switching
177(5)
6.2.1 A Qualitative Description of Q-Switching
177(1)
6.2.2 Numerical Modeling of Q-Switching
177(1)
6.2.3 Analytical Treatment of Q-Switching
178(4)
6.3 The Design of Q-Switches
182(11)
6.3.1 Mechanical Q-Switches
183(1)
6.3.2 Electrooptic Q-Switches
184(6)
6.3.3 Acousto-Optic Q-Switches
190(1)
6.3.4 Saturable Absorber Dyes for Q-Switching
191(2)
6.4 Mode-Locking
193(9)
6.4.1 A Qualitative Description of Mode-Locking
193(2)
6.4.2 Analytical Description of Mode-Locking
195(3)
6.4.3 The Design of Mode-Locking Modulators
198(4)
Symbols Used in the Chapter
202(2)
6.5 Exercises
204(3)
7 INTRODUCTION TO NONLINEAR OPTICS
207(34)
7.1 Nonlinear Polarizability
208(1)
7.2 Second Harmonic Generation
209(12)
7.2.1 The Process of Conversion
210(5)
7.2.2 Phase Matching
215(5)
7.2.3 Design Techniques for Frequency-Doubling Laser Beams
220(1)
7.3 Optical Parametric Oscillators
221(5)
7.4 Stimulated Raman Scattering
226(5)
7.5 Self-Focusing and Optical Damage
231(2)
7.6 Nonlinear Crystals
233(3)
7.6.1 Major Crystals
233(2)
7.6.2 Other Crystals Used in Nonlinear Optics
235(1)
Symbols Used in the Chapter
236(2)
Exercises
238(3)
8 SUPPORTIVE TECHNOLOGIES
241(32)
8.1 Introduction
242(1)
8.2 Multilayer Dielectric Films
242(10)
8.2.1 The Fundamentals of Multilayer Film Theory
243(2)
8.2.2 Anti-Reflection Coatings from Multilayer Films
245(3)
8.2.3 High-Reflectance Coatings from Multilayer Films
248(4)
8.3 Birefringent Crystals
252(9)
8.3.1 Positive and Negative Uniaxial Crystals
252(2)
8.3.2 Wave Plates from Birefringent Crystals
254(7)
8.4 Photodetectors
261(8)
8.4.1 Thermal Detectors
261(1)
8.4.2 Photoelectric Detectors
262(1)
8.4.3 Photoconductors
263(2)
8.4.4 Junction Photodetectors
265(3)
8.4.5 MOS Capacitor Devices
268(1)
Symbols Used in the Chapter
269(4)
Part II Design of Laser Systems 273(210)
9 CONVENTIONAL GAS LASERS
274(28)
9.1 HeNe Lasers
274(14)
9.1.1 History of HeNe Lasers
274(2)
9.1.2 Applications for HeNe Lasers
276(4)
9.1.3 The HeNe Energy States
280(3)
9.1.4 Design of a Modern Commercial HeNe Laser
283(5)
9.2 Argon Lasers
288(12)
9.2.1 History of Argon- and Krypton-Ion Lasers
289(1)
9.2.2 Applications for Argon- and Krypton-Ion Lasers
290(2)
9.2.3 Argon and Krypton Laser States
292(2)
9.2.4 Design of a Modern Commercial Argon-Ion Laser
294(6)
Exercises
300(2)
10 CONVENTIONAL SOLID-STATE LASERS
302(42)
10.1 History
303(4)
10.2 Applications
307(1)
10.3 Laser Materials
308(4)
10.3.1 Crystalline Laser Hosts
309(1)
10.3.2 Glass Laser Hosts
310(1)
10.3.3 The Shape of the Solid-State Laser Material
311(1)
10.4 The Laser Transition In Nd:YAG
312(3)
10.5 Pump Technology
315(23)
10.5.1 Noble Gas Discharge Lamps as Optical Pump Sources for Nd:YAG Lasers
316(5)
10.5.2 Power Supplies for Noble Gas Discharge Lamps
321(3)
10.5.3 Pump Cavities for Noble Gas Discharge Lamp-Pumped Lasers
324(3)
10.5.4 Spectra-Physics Quanta-Ray GCR Family
327(2)
10.5.5 Semiconductor Lasers as Solid-State Laser Pump Sources
329(4)
10.5.6 Pump Cavities for Diode Laser Pumped Solid-State Lasers
333(4)
10.5.7 Coherent DPSS 1064 Laser Family
337(1)
Exercises
338(6)
11 TRANSITION-METAL SOLID-STATE LASERS
344(40)
11.1 History
345(3)
11.2 Applications
348(1)
11.3 Laser Materials
348(8)
11.3.1 Ruby--Primary Line at 694.3 nm
349(2)
11.3.2 Alexandrite--Tunable from 700 nm to 818 nm
351(2)
11.3.3 Ti:Sapphire--Tunable from 670 nm to 1090 nm
353(2)
11.3.4 Comparison between Major Solid-State Laser Hosts
355(1)
11.4 Ti:Sapphire Laser Design
356(14)
11.4.1 Ring Lasers
356(6)
11.4.2 Birefringent Filters
362(3)
11.4.3 Coherent Model 890 and 899 Ti:Sapphire Lasers
365(5)
11.5 Femtosecond Pulse Laser Design
370(10)
11.5.1 Dispersion in Femtosecond Lasers
370(1)
11.5.2 Nonlinearities Used to Create Femtosecond Pulses
371(2)
11.5.3 Measuring Femtosecond Pulses
373(1)
11.5.4 Colliding Pulse Mode-Locking
373(1)
11.5.5 Grating Pulse Compression
374(1)
11.5.6 Solitons
375(1)
11.5.7 Kerr-Lens Mode-Locking (KLM) in Ti:Sapphire
376(1)
11.5.8 Coherent Mira Femtosecond Lasers
377(3)
Exercises
380(4)
12 OTHER MAJOR COMMERCIAL LASERS
384(57)
12.1 The Design of Carbon Dioxide Lasers
385(19)
12.1.1 Introduction to CO(2) Laser States
386(3)
12.1.2 The Evolution of CO(2) Lasers
389(4)
12.1.3 Waveguide CO(2) Lasers
393(1)
12.1.4 A Typical Modern CO(2) Industrial Laser
394(9)
12.1.5 Optical Components and Detectors for CO(2) Lasers
403(1)
12.2 The Design of Excimer Lasers
404(17)
12.2.1 Introduction to Excimer Laser States
405(3)
12.2.2 The Evolution of Excimers
408(1)
12.2.3 General Design Background
409(5)
12.2.4 A Typical Modern Excimer Laser
414(3)
12.2.5 Laser Beam Homogenizers
417(1)
12.2.6 Application Highlight
418(3)
12.3 Overview of Semiconductor Diode Lasers
421(20)
12.3.1 History of Semiconductor Diode Lasers
421(3)
12.3.2 The Basics of the Semiconductor Diode Laser
424(4)
12.3.3 Confinement in the Semiconductor Diode Laser
428(4)
12.3.4 The Quantum Well Semiconductor Diode Laser
432(3)
12.3.5 Application Highlight: The CD Player
435(6)
APPENDIX
441(42)
A.1 Laser Safety
441(9)
A.1.1 Electrocution
441(3)
A.1.2 Eye Damage
444(2)
A.1.3 Chemical Hazards
446(1)
A.1.4 Other Hazards
447(3)
A.2 Significant Figures
450(1)
A.3 The Electromagnetic Wave Equation
450(6)
A.3.1 Maxwell's Equations
450(2)
A.3.2 A General Wave Equation for Light Propagation in a Material
452(1)
A.3.3 Light Propagation in a Vacuum
453(1)
A.3.4 Light Propagation in a Simple Isotropic Material with No Net Static Charge
454(1)
A.3.5 Light Propagation in a Simple Laser Material with No Net Static Charge
454(1)
A.3.6 A One-Dimensional Wave Equation for a Less Simple Isotropic Material
454(2)
A.4 Lenses and Telescopes
456(5)
A.4.1 Lenses
456(1)
A.4.2 Classical Lens Equations
457(2)
A.4.3 Telescopes
459(2)
A.5 Reflection and Refraction
461(2)
A.5.1 Nomenclature
461(1)
A.5.2 Snell's Law
462(1)
A.5.3 Total Internal Reflection
462(1)
A.5.4 Brewster's Angle
462(1)
A.6 Fresnel Equations
463(2)
A.7 The Effective Value of the Nonlinear Tensor
465(1)
A.8 Projects and Design Activities
466(9)
A.8.1 Gas Laser Activities
466(6)
A.8.2 Nd:YAG Laser Activities
472(1)
A.8.3 Transition Metal Laser Activities
473(1)
A.8.4 Successful Student Projects
474(1)
A.9 Laser Alignment
475(2)
A.10 Glossary of Basic Laser Terms
477(6)
INDEX 483(15)
CONSTANTS USED IN BOOK 498

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program