did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.


Signal Processing and Linear Systems

by ;
  • ISBN13:


  • ISBN10:


  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2021-02-26
  • Publisher: Oxford University Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
  • Buyback Icon We Buy This Book Back!
    In-Store Credit: $65.63
    Check/Direct Deposit: $62.50
    PayPal: $62.50
List Price: $245.32 Save up to $172.21
  • Rent Book $93.22
    Add to Cart Free Shipping Icon Free Shipping

    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?


This second edition contains much of the content of Linear Systems and Signals, Third Edition, by the same authors, with added chapters on analog and digital filters and digital signal processing, plus additional applications to communications and controls. Unlike Linear Systems & Signals 3e, in this book the Laplace transform follows Fourier. This book contains enough material on discrete-time systems to be used in a traditional course in Signals and Systems and in an introductory course in Digital Signal Processing.

Table of Contents

Chapter B: Background
B.1 Complex Numbers
B.2 Sinusoids
B.3 Sketching Signals
B.4 Cramer's Rule
B.5 Partial Fraction Expansion
B.6 Vectors and Matrices
B.7 MATLAB: Elementary Operations
B.8 Appendix: Useful Mathematical Formulas

Chapter 1: Signals and Systems
1.1 Size of a Signal
1.2 Some Useful Signal Operations
1.3 Classification of Signals
1.4 Some Useful Signal Models
1.5 Even and Odd Functions
1.6 Systems
1.7 Classification of Systems
1.8 System Model: Input-Output Description
1.9 Internal and External Descriptions of a System
1.10 Internal Description: The State-Space Description
1.11 MATLAB: Working with Functions
1.12 Summary

Chapter 2: Time-Domain Analysis of Continuous-Time Systems
2.1 Introduction
2.2 System Response to Internal Conditions: The Zero-Input Response
2.3 The Unit Impulse Response h(t)
2.4 System Response to External Input: The Zero-State Response
2.5 System Stability
2.6 Intuitive Insights into System Behavior
2.7 MATLAB: M-Files
2.8 Appendix: Determining the Impulse Response
2.9 Summary

Chapter 3: Signal Representation by Fourier Series
3.1 Signals as Vectors
3.2 Signal Comparison: Correlation
3.3 Signal Representation by an Orthogonal Signal Set
3.4 Trigonometric Fourier Series
3.5 Existence and Convergence of the Fourier Series
3.6 Exponential Fourier Series
3.7 LTIC System Response to Periodic Inputs
3.8 Numerical Computation of Dn
3.9 MATLAB: Fourier Series Applications
3.10 Summary

Chapter 4: Continuous-Time Signal Analysis: The Fourier Transform
4.1 Aperiodic Signal Representation by the Fourier Integral
4.2 Transforms of Some Useful Functions
4.3 Some Properties of the Fourier Transform
4.4 Signal Transmission Through LTIC Systems
4.5 Ideal and Practical Filters
4.6 Signal Energy
4.7 Application to Communications: Amplitude Modulation
4.8 Angle Modulation
4.9 Data Truncation: Window Functions
4.10 MATLAB: Fourier Transform Topics
4.11 Summary

Chapter 5: Sampling
5.1 The Sampling Theorem
5.2 Signal Reconstruction
5.3 Analog-to-Digital (A/D) Conversion
5.4 Dual of Time Sampling: Spectral Sampling
5.5 Numerical Computation of the Fourier Transform: The Discrete Fourier Transform
5.6 The Fast Fourier Transform (FFT)
5.7 MATLAB: The Discrete Fourier Transform
5.8 Summary

Chapter 6: Continuous-Time System Analysis Using the Laplace Transform
6.1 The Laplace Transform
6.2 Some Properties of the Laplace Transform
6.3 Solution of Differential and Integro-Differential Equations
6.3.4 Inverse Systems
6.4 Analysis of Electrical Networks: The Transformed Network
6.5 Block Diagrams
6.6 System Realization
6.7 Application to Feedback and Controls
6.8 The Bilateral Laplace Transform
6.9 Summary

Chapter 7: Frequency Response and Analog Filters
7.1 Frequency Response of an LTIC System
7.2 Bode Plots
7.3 Control System Design Using Frequency Response
7.4 Filter Design by Placement of Poles and Zeros of H(s)
7.5 Butterworth Filters
7.6 Chebyshev Filters
7.7 Frequency Transformations
7.8 Filters to Satisfy Distortionless Transmission Conditions
7.9 MATLAB: Continuous-Time Filters
7.10 Summary

Chapter 8: Discrete-Time Signals and Systems
8.1 Introduction
8.2 Useful Signal Operations
8.3 Some Useful Discrete-Time Signal Models
8.4 Aliasing and Sampling Rate
8.5 Examples of Discrete-Time Systems
8.6 MATLAB: Representing, Manipulating, and Plotting Discrete-Time Signals
8.7 Summary

Chapter 9: Time-Domain Analysis of Discrete-Time Systems
9.1 Classification of Discrete-Time Systems
9.2 Discrete-Time System Equations
9.3 System Response to Internal Conditions: The Zero-Input Response
9.4 The Unit Impulse Response h[n]
9.5 System Response to External Input: The Zero-State Response
9.6 System Stability
9.7 Intuitive Insights into System Behavior
9.8 MATLAB: Discrete-Time Systems
9.9 Appendix: Impulse Response for a Special Case
9.10 Summary

Chapter 10: Fourier Analysis of Discrete-Time Signals
10.1 Periodic Signal Representation by Discrete-Time Fourier Series
10.2 Aperiodic Signal Representation by Fourier Integral
10.3 Properties of the DTFT
10.4 DTFT Connection with the CTFT
10.5 LTI Discrete-Time System Analysis by
10.6 Signal Processing by the DFT and FFT
10.7 Generalization of the DTFT to the z-Transform
10.8 MATLAB: Working with the DTFS and the DTFT
10.9 Summary

Chapter 11: Discrete-Time System Analysis Using the z-Transform
11.1 The z-Transform
11.2 Some Properties of the z-Transform
11.3 z-Transform Solution of Linear Difference Equations
11.4 System Realization
11.5 Connecting the Laplace and z-Transforms
11.6 Sampled-Data (Hybrid) Systems
11.7 The Bilateral z-Transform
11.8 Summary

Chapter 12: Frequency Response and Digital Filters
12.1 Frequency Response of Discrete-Time Systems
12.2 Frequency Response from Pole-Zero Locations
12.3 Digital Filters
12.4 Filter Design Criteria
12.5 Recursive Filter Design: The Impulse Invariance Method
12.6 Recursive Filter Design: The Bilinear Transformation Method
12.7 Nonrecursive Filters
12.8 Nonrecursive Filter Design
12.9 MATLAB: Designing High-Order Filters
12.10 Summary

Chapter 13: State-Space Analysis
13.1 Mathematical Preliminaries
13.2 Introduction to State Space
13.3 A Systematic Procedure to Determine State Equations
13.4 Solution of State Equations
13.5 Linear Transformation of a State Vector
13.6 Controllability and Observability
13.7 State-Space Analysis of Discrete-Time Systems
13.8 MATLAB: Toolboxes and State-Space Analysis
13.9 Summary

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program