did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783527409976

Silicon Carbide, Volume 2 Power Devices and Sensors

by ; ; ;
  • ISBN13:

    9783527409976

  • ISBN10:

    3527409971

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2009-12-02
  • Publisher: Wiley-VCH
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $259.14 Save up to $0.30
  • Buy New
    $258.84
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

Silicon Carbide - this easy to manufacture compound of silicon and carbon is said to be THE emerging material for applications in electronics. High thermal conductivity, high electric field breakdown strength and high maximum current density make it most promising for high-powered semiconductor devices. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles. This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters. The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.

Author Biography

Peter Friedrichs is Managing Director at SiCED, a joint venture between Siemens and Infineon located in Erlangen, Germany. SiCED develops technologies for SiC power semiconductors and systems based on these devices. Their research is devoted to device design and simulation, processing technology as well as the characterization of devices including also end of life tests.

Tsunenobu Kimoto, Professor at the Department of Electronic Science and Engineering at Kyoto University, Japan, has dedicated his work to research on the growth and characterization of wide bandgap semiconductors, the process technology and physics of SiC devices. He has authored over 300 scientific publications.

Lothar Ley is recently retired as Professor of Physics and Head of the Institute of Technical Physics at the University of Erlangen, Germany. From 2002 to 2008 he was speaker of the interdisciplinary Research Unit (DFG Forschergruppe) ?Silicon carbide as semiconductor material: novel aspects of crystal growth and doping?. Alongside its experimental research on SiC, his group currently also works on Diamond, Carbon Nanotubes, and Graphene. He has authored and co-authored over 400 scientific publications.

Gerhard Pensl works with his group on the growth of SiC single crystals for high power device applications, its electrical and optical characterization, and on the investigation of multi-crystalline Si for solar cells. He is Academic Director at the Institute of Applied Physics at the University Erlangen-N?rnberg, Germany, and has authored over 300 scientific publications.

Table of Contents

Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices
Silicon Carbide power devices - Status and upcoming challenges with a special attention to industrial application
Effect of an intermediate graphite layer on the electronic properties of metal/SiC contacts
Reliability aspects of SiC Schottky Diodes
Design, process, and performance of all-epitaxial normally-off SiC JFETs
Extreme Temperature SiC Integrated Circuit Technology
1200 V SiC Vertical-channel-JFET based cascode switches
Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors
High electron mobility ahieved in n-channel 4H-SiC MOSFETs oxidized in the presence of nitrogen
4H-SiC MISFETs with Nitrogen-containing Insulators
SiC Inversion Mobility
Development of SiC diodes, power MOSFETs and intellegent Power Modules
Reliability issues of 4H-SiC power MOSFETs toward high junction temperature operation
Application of SiC-Transistors in Photovoltaic-Inverters
Design and Technology Considerations for SiC Bipolar Devices: BJTs, IGBTs,and GTOs
Suppressed surface recombination structure and surface passivation for improving current gain of 4H-SiC BJTs
SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection
Table of Contents provided by Publisher. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program