did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780849335891

Solid-state Lasers And Applications

by ;
  • ISBN13:

    9780849335891

  • ISBN10:

    0849335892

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2006-11-16
  • Publisher: CRC Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $230.00 Save up to $180.52
  • Rent Book $144.90
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

Because of the favorable characteristics of solid-state lasers, they have become the preferred candidates for a wide range of applications in science and technology, including spectroscopy, atmospheric monitoring, micromachining, and precision metrology. Presenting the most recent developments in the field, Solid-State Lasers and Applications focuses on the design and applications of solid-state laser systems.With contributions from leading international experts, the book explores the latest research results and applications of solid-state lasers as well as various laser systems. The beginning chapters discuss current developments and applications of new solid-state gain media in different wavelength regions, including cerium-doped lasers in the ultraviolet range, ytterbium lasers near 1µm, rare-earth ion-doped lasers in the eye-safe region, and tunable Cr2+:ZnSe lasers in the mid-infrared range. The remaining chapters study specific modes of operation of solid-state laser systems, such as pulsed microchip lasers, high-power neodymium lasers, ultrafast solid-state lasers, amplification of femtosecond pulses with optical parametric amplifiers, and noise characteristics of solid-state lasers.Solid-State Lasers and Applications covers the most important aspects of the field to provide current, comprehensive coverage of solid-state lasers.

Table of Contents

Preface ix
1 Passively Q-Switched Microchip Lasers
1(76)
J.J. Zayhowski
1.1 Introduction
3(3)
1.1.1 Motivation
3(1)
1.1.2 What Is a Passively Q-Switched Microchip Laser?
3(2)
1.1.3 Organization of Chapter
5(1)
1.2 Theory
6(32)
1.2.1 Fundamental Concepts
6(1)
1.2.1.1 Absorption
6(1)
1.2.1.2 Population Inversion, Stimulated Emission, and Gain
6(1)
1.2.1.3 Spontaneous Emission and Lifetime
7(1)
1.2.1.4 Bandwidth
8(1)
1.2.2 Models of Gain Media and Saturable Absorbers
8(1)
1.2.2.1 Four-Level Gain Media
8(1)
1.2.2.2 Three-Level Gain Media
9(1)
1.2.2.3 Quasi-Three-Level Gain Media
9(1)
1.2.2.4 Saturable Absorber
11(1)
1.2.3 Rate-Equation Model
11(1)
1.2.3.1 Rate Equations
11(1)
1.2.3.2 Rate Equations without Saturable Absorber
12(1)
1.2.3.3 Rate Equations with Saturable Absorber
15(1)
1.2.3.4 Buildup from Noise
16(1)
1.2.4 Solution to Rate Equations
16(1)
1.2.4.1 Rate Equations for Passively Q-Switched Laser
16(1)
1.2.4.2 Initial Conditions
18(1)
1.2.4.3 Second Threshold
19(1)
1.2.4.4 Peak Power
20(1)
1.2.4.5 Pulse Energy
22(1)
1.2.4.6 Pulse Width
23(1)
1.2.4.7 CW-Pumped Passively Q-Switched Lasers
24(1)
1.2.5 Mode Beating, Afterpulsing, and Pulse-to-Pulse Stability
25(1)
1.2.5.1 Single-Frequency Operation
25(1)
1.2.5.2 Afterpulsing
28(1)
1.2.5.3 Pulse Bifurcation, Pulse-to-Pulse Amplitude Stability
29(1)
1.2.5.4 Pulse-to-Pulse Timing Stability
29(1)
1.2.6 Semiconductor Saturable-Absorber Mirrors
30(2)
1.2.7 Transverse Mode Definition
32(1)
1.2.7.1 Issues in Laser Design
32(1)
1.2.7.2 Cavity Designs
33(1)
1.2.7.3 Microchip Fabry–Perot Cavities
33(1)
1.2.7.3.1 Thermal Guiding
33(1)
1.2.7.3.2 Aperture Guiding in Three-Level Gain Media
34(1)
1.2.7.3.3 Gain Guiding
35(1)
1.2.7.3.4 Gain-Related Index Guiding
35(1)
1.2.7.3.5 Self-Focusing
36(1)
1.2.7.3.6 Aperture Guiding in Saturable Absorber
36(1)
1.2.7.4 Pump Considerations
36(1)
1.2.7.5 Polarization Control
37(1)
1.2.8 Additional Thermal Effects
37(1)
1.3 Demonstrated Device Performance
38(15)
1.3.1 Demonstrated Passively Q-Switched Lasers
38(1)
1.3.1.1 Saturable Absorbers
38(1)
1.3.1.2 Passively Q-Switched Microchip Lasers
40(1)
1.3.1.2.1 Low-Power Embodiments
40(1)
1.3.1.2.2 High-Power Embodiments
43(1)
1.3.2 Amplification
44(3)
1.3.3 Frequency Conversion
47(1)
1.3.3.1 Nonlinear Frequency Conversion
47(1)
1.3.3.1.1 Harmonic Conversion
47(1)
1.3.3.1.2 Optical Parametric Conversion
48(1)
1.3.3.1.3 Raman Conversion
49(2)
1.3.3.2 Gain-Switched Lasers
51(2)
1.4 Applications
53(9)
1.4.1 Overview
53(1)
1.4.2 Ranging and Imaging
54(1)
1.4.2.1 Scanning Three-Dimensional Imaging Systems
54(1)
1.4.2.2 Flash Three-Dimensional Imaging Systems
55(2)
1.4.3 Laser-Induced Breakdown Spectroscopy
57(1)
1.4.4 Environmental Monitoring
57(4)
1.4.5 Other Applications
61(1)
1.5 Conclusion
62(1)
Acknowledgments
63(1)
References
63(9)
List of Symbols
72(5)
2 Yb-Doped Solid-State Lasers and Materials
77(36)
Bruno Viana, Johan Petit, Romain Gaumé, Philippe Goldner, Mathieu Jacquemet, Frédéric Druon, Sebastien Chénais, François Balembois, and Patrick Georges
2.1 Introduction
78(1)
2.2 Crystal-Field Effects on Yb³+ Energy Level Distributions
79(5)
2.2.1 Effect on the Spin–Orbit Splitting: the "Barycenters Plot"
80(1)
2.2.2 Crystal Field Strength and Yb³+ Manifolds Splitting
80(4)
2.3 Laser Modeling
84(6)
2.3.1 Quasi-Thermal Equilibrium
84(1)
2.3.2 Transparency Intensity Imin
85(2)
2.3.3 Laser Extraction Efficiency
87(1)
2.3.4 Thermal Loading
88(2)
2.4 Evaluation of Quantum Efficiency
90(4)
2.5 Structural/Optical Properties Relationships for Femtosecond Lasers
94(7)
2.5.1 Yb³+ Hosts with Broad Emission Bands
94(1)
2.5.2 Performances of Some Yb³+ Doped Laser Materials in C.W. Diode Pumping
94(3)
2.5.3 Performances of Some Yb³+ Doped Laser Materials in Fs Regime
97(4)
2.6 Structural/Thermomechanical Effects in High Power Yb-Doped Lasers
101(5)
2.6.1 Thermal Shock Resistance
101(1)
2.6.2 Estimation of Thermal Expansion and Thermal Conductivity Parameters
102(4)
2.7 Conclusions
106(1)
Acknowledgments
107(1)
References
108(5)
3 Tunable Cr²+:ZnSe Lasers in the Mid-Infrared
113(50)
Alphan Sennaroglu and Umit Demirbas
3.1 Introduction
114(3)
3.1.1 Overview of Cr²+:ZnSe Lasers
114(1)
3.1.2 Historical Review of Tunable Solid-State Lasers
115(2)
3.2 Synthesis and Absorption Spectroscopy of Cr²+:ZnSe
117(8)
3.2.1 Synthesis Methods for Cr²+:ZnSe
117(2)
3.2.2 Thermal Diffusion Doping
119(1)
3.2.3 Modeling of Thermal Diffusion Doping
120(1)
3.2.4 Room-Temperature Absorption Spectra of Cr²+:ZnSe
120(3)
3.2.5 Dependence of Passive Laser Losses on Chromium Concentration
123(1)
3.2.6 Determination of the Diffusion Coefficient
123(2)
3.3 Fluorescence Spectroscopy of Cr²+:ZnSe
125(13)
3.3.1 Emission Spectrum of Cr²+:ZnSe
126(1)
3.3.2 Temperature and Concentration Dependence of the Fluorescence Lifetime
127(1)
3.3.2.1 Concentration Dependence of the Fluorescence Lifetime
128(1)
3.3.2.2 Temperature Dependence of the Fluorescence Lifetime
130(1)
3.3.3 Dependence of the Fluorescence Efficiency on Chromium Concentration
131(2)
3.3.4 Determination of Absorption Cross Sections
133(1)
3.3.4.1 Model Equations
133(1)
3.3.4.2 Continuous-Wave Case
134(1)
3.3.4.3 Pulsed Case
136(1)
3.3.4.4 Experimental Results
137(1)
3.4 Pulsed Operation of Cr²+:ZnSe Lasers
138(7)
3.4.1 Review of Earlier Work on Pulsed Cr²+:ZnSe Lasers
138(1)
3.4.2 Dependence of the Power Performance on Chromium Concentration
139(4)
3.4.3 Intracavity-Pumped Cr²+:ZnSe Laser with Ultrabroad Tuning
143(2)
3.5 Continuous-wave Cr²+:ZnSe lasers
145(5)
3.6 Mode-Locked Cr²+:ZnSe Lasers
150(3)
3.7 Conclusions
153(1)
Acknowledgments
154(1)
References
154(9)
4 All-Solid-State Ultraviolet Cerium Lasers
163(30)
Shingo Ono, Zhenlin Liu, and Nobuhiko Sarukura
4.1 Introduction
164(8)
4.1.1 Cerium-Doped Fluoride Crystals
164(5)
4.1.2 Basic Properties of Ce:LLF Laser Medium
169(1)
4.1.3 Basic Properties of Ce:LiCAF Laser Medium
170(2)
4.2 Ultraviolet Tunable Pulse Generation from Ce³+-Doped Fluoride Lasers
172(2)
4.2.1 Tunable Ce:LLF Laser
172(1)
4.2.2 Tunable Ce:LiCAF Laser
173(1)
4.3 Generation of Subnanosecond Pulses from Ce³+-Doped Fluoride Lasers
174(5)
4.3.1 Short Pulse Generation with Simple Laser Scheme
175(1)
4.3.2 Subnanosecond Ce:LLF Laser Pumped by the Fifth Harmonic of Nd:YAG Laser
176(1)
4.3.3 Short Pulse Generation from Ce:LiCAF Laser
177(1)
4.3.3.1 Short Pulse Generation from Ce:LiCAF Laser with Nanosecond Pumping
177(1)
4.3.3.2 Short Pulse Generation from Ce:LiCAF Laser with Picosecond Pumping
179(1)
4.4 High-Power Ultraviolet Cerium Laser
179(7)
4.4.1 High-Energy Pulse Generation from a Ce:LLF Oscillator
179(1)
4.4.2 High-Energy Pulse Generation from a Ce:LiCAF Oscillator
180(1)
4.4.3 High-Energy Pulse Generation from a Ce:LiCAF Laser Amplifier
181(2)
4.4.4 Ce:LiCAF Chirped-Pulse Amplification (CPA) System
183(3)
4.5 Conclusions and Prospects
186(1)
References
187(6)
5 Eyesafe Rare Earth Solid-State Lasers
193(40)
Robert C. Stoneman
5.1 Introduction
193(1)
5.2 Eyesafe Wavelengths
194(1)
5.3 Electronic Energy Structure
195(1)
5.4 Quasi-Three-Level Model
196(2)
5.5 Reabsorption Loss
198(4)
5.6 Ground State Depletion
202(3)
5.7 Reciprocity of Emission and Absorption
205(2)
5.8 Thulium-Sensitized Holmium Laser
207(2)
5.9 Thulium Laser
209(2)
5.10 Upper-State Pumped Holmium Laser
211(3)
5.11 Ytterbium-Sensitized Erbium Laser
214(2)
5.12 Upper-State Pumped Erbium Laser
216(1)
5.13 Summary
217(1)
References
217(16)
6 High-Power Neodymium Lasers
233(26)
Susumu Konno
6.1 Introduction
233(1)
6.2 Host Materials
234(2)
6.2.1 Basic Properties and Recent Progress of Nd:YAG Lasers
235(1)
6.2.2 Basic Properties and Recent Progress of Nd:YVO4 Lasers
236(1)
6.2.3 Nd:YLF
236(1)
6.3 Shape of Laser Crystals
236(15)
6.3.1 Rod Crystals
236(1)
6.3.1.1 End-Pumped Rod Lasers
237(1)
6.3.1.2 Side-Pumped Rod Lasers
240(4)
6.3.2 Slab Crystals
244(1)
6.3.2.1 End-Pumped Slab Lasers
244(1)
6.3.2.2 Side-Pumped Slab Lasers
246(5)
6.4 Wavelength Conversion Lasers
251(4)
6.4.1 Intracavity Second-Harmonic Generation
251(3)
6.4.2 Intracavity Third-Harmonic Generation
254(1)
6.5 Summary
255(1)
References
255(4)
7 Passively Mode-Locked Solid-State Lasers
259(60)
Rüdiger Paschotta and Ursula Keller
7.1 Introduction
260(1)
7.2 History of Mode-Locked Lasers
261(5)
7.3 Gain Media for Ultrashort Pulse Generation
266(4)
7.4 Dispersion
270(5)
7.4.1 Orders of Dispersion
270(1)
7.4.2 Dispersion Compensation
271(1)
7.4.2.1 Dispersion from Wavelength-Dependent Refraction
271(1)
7.4.2.2 Grating Pairs
272(1)
7.4.2.3 Gires–Tournois Interferometers (GTIs)
272(1)
7.4.2.4 Dispersive Mirrors
273(1)
7.4.2.5 Dispersive SESAMs
274(1)
7.5 Kerr Nonlinearity
275(1)
7.6 Soliton Formation
276(1)
7.7 Mode Locking
277(19)
7.7.1 General Remarks
277(2)
7.7.2 Active Mode Locking
279(2)
7.7.3 Passive Mode Locking
281(1)
7.7.3.1 The Starting Mechanism
281(1)
7.7.3.2 Parameters of Fast and Slow Saturable Absorbers
282(1)
7.7.3.3 Passive Mode Locking with Fast and Slow Saturable Absorbers
284(1)
7.7.3.4 Saturable Absorbers for Passive Mode Locking
287(1)
7.7.3.4.1 Semiconductor Absorbers
287(1)
7.7.3.4.2 Kerr Lens Mode Locking
290(1)
7.7.3.4.3 Additive Pulse Mode Locking
291(1)
7.7.3.4.4 Nonlinear Mirror Mode Locking
291(1)
7.7.3.5 Q-Switching Instabilities
292(1)
7.7.3.6 Passive Mode Locking at High Repetition Rates
294(1)
7.7.3.7 Summary: Requirements for Stable Passive Mode Locking
296(1)
7.8 Designs of Mode-Locked Lasers
296(8)
7.8.1 Picosecond Lasers
297(1)
7.8.2 High-Power Thin-Disk Laser
297(2)
7.8.3 Typical Femtosecond Lasers
299(2)
7.8.4 Lasers with High Repetition Rates
301(1)
7.8.5 Passively Mode-Locked Optically Pumped Semiconductor Lasers
302(2)
7.9 Summary and Outlook
304(2)
Acknowledgments
306(1)
References
306(13)
8 Multipass-Cavity Femtosecond Solid-State Lasers
319(30)
Alphan Sennaroglu and James G. Fujimoto
8.1 Introduction
319(2)
8.2 Mode-Locked Femtosecond Lasers
321(3)
8.3 General Characteristics of Multipass Cavities
324(14)
8.3.1 What Is a Q-Preserving Multipass Cavity?
324(1)
8.3.2 Design Rules for Q-Preserving Multipass Cavities
325(4)
8.3.3 An Illustrative Design Example
329(1)
8.3.4 Compensating Optics for Non-q-Preserving MPCs
330(3)
8.3.5 Pulse Repetition Rates
333(4)
8.3.6 Practical Considerations
337(1)
8.4 Experimental Work on Multipass Cavity Femtosecond Lasers
338(7)
8.4.1 Compact Femtosecond Lasers Based on the MPC Concept
339(3)
8.4.2 Pulse Energy Scaling in Low-Average-Power Systems
342(1)
8.4.3 High Pulse Energies with MPCs
343(1)
8.4.4 MPC Lasers with Ultralow Repetition Rates
344(1)
8.5 Conclusions
345(1)
Acknowledgments
345(1)
References
346(3)
9 Cavity-Dumped Femtosecond Laser Oscillator and Application to Waveguide Writing
349(40)
Alexander Killi, Max Lederer, Daniel Kopf, Uwe Morgner, Roberto Osellame, and Giulio Cerullo
9.1 The Laser Light Source
9.1.1 Introduction
350(1)
9.1.2 Mode-Locked Yb:XXX Laser Oscillators
351(1)
9.1.3 Numerical Model
351(1)
9.1.3.1 Numerical Solution
353(1)
9.1.3.2 Soliton Mode-Locking
353(1)
9.1.3.3 Kelly Sidebands
354(1)
9.1.4 Cavity-Dumping Dynamics of Picosecond Lasers
354(2)
9.1.5 Cavity-Dumping Experiments With Picosecond Lasers
356(2)
9.1.6 Cavity-Dumping Dynamics of Femtosecond Lasers
358(9)
9.1.7 The Cavity-Dumped Yb:KYW Oscillator
367(2)
9.1.8 Pulse Compression
369(2)
9.1.9 Conclusion
371(1)
9.2 Optical Waveguide Writing
371(12)
9.2.1 Introduction
371(1)
9.2.2 Absorption of Femtosecond Pulses in Transparent Materials
372(1)
9.2.3 Refractive Index Change
373(2)
9.2.4 State of The Art in Femtosecond Laser Waveguide Writing
375(2)
9.2.5 Optical Waveguide Writing by Cavity-Dumped Yb Laser
377(6)
9.2.6 Conclusions
383(1)
References
383(6)
10 Solid-State Laser Technology for Optical Frequency Metrology 389(48)
Oliver D. Mücke, Lia Matos, and Franz X. Kärtner
10.1 Femtosecond-Laser-Based Frequency Combs for Optical Frequency Metrology
390(4)
10.2 Ultrabroadband Ti:Sapphire Lasers
394(11)
10.2.1 Laser Dynamics
394(5)
10.2.2 Technical Challenges in Generating Octave-Spanning Spectra
399(4)
10.2.3 Experimental Setup and Results
403(2)
10.3 Carrier-Envelope Phase Control
405(6)
10.4 Carrier-Envelope Phase-Controlled 200 MHz Octave-Spanning Ti:Sapphire Lasers
411(3)
10.5 Noise Analysis of Carrier-Envelope Frequency-Stabilized Lasers
414(10)
10.5.1 Transfer Function Representation for the Pulse Energy versus Pump-Power Dynamics
416(4)
10.5.2 Determination of the Carrier-Envelope Phase Error
420(4)
10.6 Carrier-Envelope Phase-Independent Optical Clockwork for the HeNe/CH4 Optical Molecular Clock
424(5)
10.7 Conclusions
429(1)
Acknowledgments
430(1)
References
430(7)
11 Solid-State Ultrafast Optical Parametric Amplifiers 437(36)
Giulio Cerullo and Cristian Manzoni
11.1 Introduction
437(2)
11.2 Theory of Optical Parametric Amplification
439(11)
11.3 Optical Parametric Amplifiers from the Visible to the Mid-IR
450(4)
11.3.1 Seed Generation
450(2)
11.3.2 OPAs in Near-IR
452(1)
11.3.3 OPAs in the Visible
453(1)
11.3.4 OPAs in Mid-IR
453(1)
11.4 Ultrabroadband Optical Parametric Amplifiers
454(6)
11.5 Self-Phase-Stabilized Optical Parametric Amplifiers
460(5)
11.6 Optical Parametric Chirped-Pulse Amplification
465(2)
11.7 Conclusions
467(1)
References
468(5)
12 Noise of Solid-State Lasers 473(38)
Rudiger Paschotta, Harald R. Telle, and Ursula Keller
12.1 Introduction
474(1)
12.2 Mathematical Basics
474(3)
12.3 Single-Frequency Lasers
477(9)
12.3.1 Quantum Noise Limits
477(4)
12.3.2 Other Noise Sources
481(2)
12.3.3 Noise Measurements
483(1)
12.3.3.1 Measurement of Relative Intensity Noise
483(1)
12.3.3.2 Measurement of Phase Noise
484(2)
12.4 Multimode Continuous-Wave Lasers
486(2)
12.5 Q-Switched Lasers
488(1)
12.5.1 General Remarks
488(1)
12.5.2 Active vs. Passive Q Switching
488(1)
12.6 Mode-Locked Lasers
489(14)
12.6.1 Types of Noise
489(1)
12.6.2 Coupling Effects
490(2)
12.6.3 Intensity Noise
492(1)
12.6.4 Timing Jitter
493(4)
12.6.5 Jitter Measurements
497(4)
12.6.6 Optical Phase Noise and Carrier-Envelope Offset Noise
501(2)
Acknowledgments
503(1)
Appendix 1: Derivation of Schawlow—Townes Formula
503(2)
Appendix 2: Derivation of Linewidth Formula for Lasers with Amplitude/Phase Coupling
505(1)
References
506(5)
Index 511

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program