rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9783540221890

Statistical Tools for Finance and Insurance

by ; ; ; ;
  • ISBN13:

    9783540221890

  • ISBN10:

    3540221891

  • Format: Paperback
  • Copyright: 2005-07-20
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $149.00 Save up to $98.96
  • Digital
    $108.42
    Add to Cart

    DURATION
    PRICE

Summary

Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gives theoreticians insight into the applicability of the stochastic technology. Additionally, the book provides the tools, instruments and (online) algorithms for recent techniques in quantitative finance and modern treatments in insurance calculations. Written in an accessible and engaging style, this self-instructional book makes a good use of extensive examples and full explanations. The design of the text links theory and computational tools in an innovative way. All Quantlets for the calculation of examples given in the text are supported by the academic edition of XploRe and may be executed via XploRe Quantlet Server (XQS). The downloadable electronic edition of the book enables one to run, modify, and enhance all Quantlets on the spot.

Table of Contents

Contributors 13(2)
Preface 15(4)
I Finance 19(268)
1 Stable Distributions
21(24)
Szymon Borak, Wolfgang Hardie, and Rafal Weron
1.1 Introduction
21(1)
1.2 Definitions and Basic Characteristic
22(6)
1.2.1 Characteristic Function Representation
24(2)
1.2.2 Stable Density and Distribution Functions
26(2)
1.3 Simulation of α-stable Variables
28(2)
1.4 Estimation of Parameters
30(6)
1.4.1 Tail Exponent Estimation
31(2)
1.4.2 Quantile Estimation
33(1)
1.4.3 Characteristic Function Approaches
34(1)
1.4.4 Maximum Likelihood Method
35(1)
1.5 Financial Applications of Stable Laws
36(9)
2 Extreme Value Analysis and Copulas
45(20)
Krzysztof Jajuga and Daniel Papla
2.1 Introduction
45(8)
2.1.1 Analysis of Distribution of the Extremum
46(1)
2.1.2 Analysis of Conditional Excess Distribution
47(1)
2.1.3 Examples
48(5)
2.2 Multivariate Time Series
53(12)
2.2.1 Copula Approach
53(3)
2.2.2 Examples
56(1)
2.2.3 Multivariate Extreme Value Approach
57(3)
2.2.4 Examples
60(1)
2.2.5 Copula Analysis for Multivariate Time Series
61(1)
2.2.6 Examples
62(3)
3 Tail Dependence
65(28)
Rafael Schmidt
3.1 Introduction
65(1)
3.2 What is Tail Dependence?
66(3)
3.3 Calculation of the Tail-dependence Coefficient
69(6)
3.3.1 Archimedean Copulae
69(1)
3.3.2 Elliptically-contoured Distributions
70(4)
3.3.3 Other Copulae
74(1)
3.4 Estimating the Tail-dependence Coefficient
75(3)
3.5 Comparison of TDC Estimators
78(3)
3.6 Tail Dependence of Asset and FX Returns
81(3)
3.7 Value at Risk - a Simulation Study
84(9)
4 Pricing of Catastrophe Bonds
93(22)
Krzysztof Burnecki, Grzegorz Kukla, and David Taylor
4.1 Introduction
93(6)
4.1.1 The Emergence of CAT Bonds
94(2)
4.1.2 Insurance Securitization
96(1)
4.1.3 CAT Bond Pricing Methodology
97(2)
4.2 Compound Doubly Stochastic Poisson Pricing Model
99(1)
4.3 Calibration of the Pricing Model
100(4)
4.4 Dynamics of the CAT Bond Price
104(11)
5 Common Functional IV Analysis
115(20)
Michal Benko and Wolfgang Härdle
5.1 Introduction
115(1)
5.2 Implied Volatility Surface
116(2)
5.3 Functional Data Analysis
118(3)
5.4 Functional Principal Components
121(4)
5.4.1 Basis Expansion
123(2)
5.5 Smoothed Principal Components Analysis
125(2)
5.5.1 Basis Expansion
126(1)
5.6 Common Principal Components Model
127(8)
6 Implied Trinomial Trees
135(26)
Pavel Cižek and Karel Komorád
6.1 Option Pricing
136(2)
6.2 Trees and Implied Trees
138(2)
6.3 Implied Trinomial Trees
140(7)
6.3.1 Basic Insight
140(2)
6.3.2 State Space
142(2)
6.3.3 Transition Probabilities
144(1)
6.3.4 Possible Pitfalls
145(2)
6.4 Examples
147(14)
6.4.1 Pre-specified Implied Volatility
147(5)
6.4.2 German Stock Index
152(9)
7 Heston's Model and the Smile
161(22)
Rafal Weron and Uwe Wystup
7.1 Introduction
161(2)
7.2 Heston's Model
163(3)
7.3 Option Pricing
166(3)
7.3.1 Greeks
168(1)
7.4 Calibration
169(14)
7.4.1 Qualitative Effects of Changing Parameters
171(2)
7.4.2 Calibration Results
173(10)
8 FFT-based Option Pricing
183(18)
Szymon Borak, Kai Detlefsen, and Wolfgang Härdle
8.1 Introduction
183(1)
8.2 Modern Pricing Models
183(5)
8.2.1 Merton Model
184(1)
8.2.2 Heston Model
185(2)
8.2.3 Bates Model
187(1)
8.3 Option Pricing with FFT
188(4)
8.4 Applications
192(9)
9 Valuation of Mortgage Backed Securities
201(24)
Nicolas Gaussel and Julien Tamine
9.1 Introduction
201(3)
9.2 Optimally Prepaid Mortgage
204(8)
9.2.1 Financial Characteristics and Cash Flow Analysis
204(1)
9.2.2 Optimal Behavior and Price
204(8)
9.3 Valuation of Mortgage Backed Securities
212(14)
9.3.1 Generic Framework
213(2)
9.3.2 A Parametric Specification of the Prepayment Rate
215(3)
9.3.3 Sensitivity Analysis
218(7)
10 Predicting Bankruptcy with Support Vector Machines
225(28)
Wolfgang Härdle, Rouslan Moro, and Dorothea Schäfer
10.1 Bankruptcy Analysis Methodology
226(4)
10.2 Importance of Risk Classification in Practice
230(3)
10.3 Lagrangian Formulation of the SVM
233(3)
10.4 Description of Data
236(1)
10.5 Computational Results
237(6)
10.6 Conclusions
243(6)
11 Modelling Indonesian Money Demand
249(1)
Noer Azam Achsani, Oliver Holtemöller, and Hizir Sofyan
11.1 Specification of Money Demand Functions
250(3)
11.2 The Econometric Approach to Money Demand
253(7)
11.2.1 Econometric Estimation of Money Demand Functions
253(1)
11.2.2 Econometric Modelling of Indonesian Money Demand
254(6)
11.3 The Fuzzy Approach to Money Demand
260(6)
11.3.1 Fuzzy Clustering
260(1)
11.3.2 The Takagi-Sugeno Approach
261(1)
11.3.3 Model Identification
262(1)
11.3.4 Fuzzy Modelling of Indonesian Money Demand
263(3)
11.4 Conclusions
266(5)
12 Nonparametric Productivity Analysis
271(1)
Wolfgang Härdle and Seok-Oh Jeong
12.1 The Basic Concepts
272(4)
12.2 Nonparametric Hull Methods
276(3)
12.2.1 Data Envelopment Analysis
277(1)
12.2.2 Free Disposal Hull
278(1)
12.3 DEA in Practice: Insurance Agencies
279(2)
12.4 FDH in Practice: Manufacturing Industry
281(6)
II Insurance 287(1)
13 Loss Distributions
289(200)
Krzysztof Burnecki, Adam Misiorek, and Rafal Weron
13.1 Introduction
289(1)
13.2 Empirical Distribution Function
290(2)
13.3 Analytical Methods
292(11)
13.3.1 Log-normal Distribution
292(1)
13.3.2 Exponential Distribution
293(2)
13.3.3 Pareto Distribution
295(3)
13.3.4 Burr Distribution
298(1)
13.3.5 Weibull Distribution
298(2)
13.3.6 Gamma Distribution
300(2)
13.3.7 Mixture of Exponential Distributions
302(1)
13.4 Statistical Validation Techniques
303(8)
13.4.1 Mean Excess Function
303(2)
13.4.2 Tests Based on the Empirical Distribution Function
305(4)
13.4.3 Limited Expected Value Function
309(2)
13.5 Applications
311(8)
14 Modeling of the Risk Process
319(1)
Krzysztof Burnecki and Rafal Weron
14.1 Introduction
319(2)
14.2 Claim Arrival Processes
321(8)
14.2.1 Homogeneous Poisson Process
321(2)
14.2.2 Non-homogeneous Poisson Process
323(3)
14.2.3 Mixed Poisson Process
326(1)
14.2.4 Cox Process
327(1)
14.2.5 Renewal Process
328(1)
14.3 Simulation of Risk Processes
329(12)
14.3.1 Catastrophic Losses
329(5)
14.3.2 Danish Fire Losses
334(7)
15 Ruin Probabilities in Finite and Infinite Time
341(1)
Krzysztof Burnecki, Pawel Mista, and Aleksander Weron
15.1 Introduction
341(5)
15.1.1 Light- and Heavy-tailed Distributions
343(3)
15.2 Exact Ruin Probabilities in Infinite Time
346(4)
15.2.1 No Initial Capital
347(1)
15.2.2 Exponential Claim Amounts
347(1)
15.2.3 Gamma Claim Amounts
347(2)
15.2.4 Mixture of Two Exponentials Claim Amounts
349(1)
15.3 Approximations of the Ruin Probability in Infinite Time
350(13)
15.3.1 Cramer-Lundberg Approximation
351(1)
15.3.2 Exponential Approximation
352(1)
15.3.3 Lundberg Approximation
352(1)
15.3.4 Beekman-Bowers Approximation
353(1)
15.3.5 Renyi Approximation
354(1)
15.3.6 De Vylder Approximation
355(1)
15.3.7 4-moment Gamma De Vylder Approximation
356(2)
15.3.8 Heavy Traffic Approximation
358(1)
15.3.9 Light Traffic Approximation
359(1)
15.3.10 Heavy-light Traffic Approximation
360(1)
15.3.11 Subexponential Approximation
360(1)
15.3.12 Computer Approximation via the Pollaczek-Khinchin Formula
361(1)
15.3.13 Summary of the Approximations
362(1)
15.4 Numerical Comparison of the Infinite Time Approximations
363(4)
15.5 Exact Ruin Probabilities in Finite Time
367(1)
15.5.1 Exponential Claim Amounts
368(1)
15.6 Approximations of the Ruin Probability in Finite Time
368(6)
15.6.1 Monte Carlo Method
369(1)
15.6.2 Segerdahl Normal Approximation
369(2)
15.6.3 Diffusion Approximation
371(1)
15.6.4 Corrected Diffusion Approximation
372(1)
15.6.5 Finite Time De Vylder Approximation
373(1)
15.6.6 Summary of the Approximations
374(1)
15.7 Numerical Comparison of the Finite Time Approximations
374(7)
16 Stable Diffusion Approximation of the Risk Process
381(1)
Hansjörg Furrer, Zbigniew Michna, and Aleksander Weron
16.1 Introduction
381(1)
16.2 Brownian Motion and the Risk Model for Small Claims
382(4)
16.2.1 Weak Convergence of Risk Processes to Brownian Motion
383(1)
16.2.2 Ruin Probability for the Limit Process
383(1)
16.2.3 Examples
384(2)
16.3 Stable Lévy Motion and the Risk Model for Large Claims
386(9)
16.3.1 Weak Convergence of Risk Processes to α-stable Lévy Motion
387(1)
16.3.2 Ruin Probability in Limit Risk Model for Large Claims
388(2)
16.3.3 Examples
390(5)
17 Risk Model of Good and Bad Periods
395(15)
Zbigniew Michna
17.1 Introduction
395(1)
17.2 Fractional Brownian Motion and Model of Good and Bad Periods
396(3)
17.3 Ruin Probability in Limit Risk Model of Good and Bad Periods
399(3)
17.4 Examples
402(5)
18 Premiums in the Individual and Collective Risk Models
407(1)
Jan Iwanik and Joanna Nowicka-Zagrajek
18.1 Premium Calculation Principles
408(2)
18.2 Individual Risk Model
410(6)
18.2.1 General Premium Formulae
411(1)
18.2.2 Premiums in the Case of the Normal Approximation
412(1)
18.2.3 Examples
413(3)
18.3 Collective Risk Model
416(11)
18.3.1 General Premium Formulae
417(1)
18.3.2 Premiums in the Case of the Normal and Translated Gamma Approximations
418(2)
18.3.3 Compound Poisson Distribution
420(1)
18.3.4 Compound Negative Binomial Distribution
421(2)
18.3.5 Examples
423(4)
19 Pure Risk Premiums under Deductibles
427(1)
Krzysztof Burnecki, Joanna Nowicka-Zagrajek, and Agnieszka Wylomanska
19.1 Introduction
427(1)
19.2 General Formulae for Premiums Under Deductibles
428(8)
19.2.1 Franchise Deductible
429(2)
19.2.2 Fixed Amount Deductible
431(1)
19.2.3 Proportional Deductible
432(1)
19.2.4 Limited Proportional Deductible
432(2)
19.2.5 Disappearing Deductible
434(2)
19.3 Premiums Under Deductibles for Given Loss Distributions
436(14)
19.3.1 Log-normal Loss Distribution
437(1)
19.3.2 Pareto Loss Distribution
438(3)
19.3.3 Burr Loss Distribution
441(4)
19.3.4 Weibull Loss Distribution
445(2)
19.3.5 Gamma Loss Distribution
447(2)
19.3.6 Mixture of Two Exponentials Loss Distribution
449(1)
19.4 Final Remarks
450(3)
20 Premiums, Investments, and Reinsurance
453(1)
Pawel Mista and Wojciech Otto
20.1 Introduction
453(3)
20.2 Single-Period Criterion and the Rate of Return on Capital
456(3)
20.2.1 Risk Based Capital Concept
456(1)
20.2.2 How To Choose Parameter Values?
457(2)
20.3 The Top-down Approach to Individual Risks Pricing
459(4)
20.3.1 Approximations of Quantiles
459(1)
20.3.2 Marginal Cost Basis for Individual Risk Pricing
460(1)
20.3.3 Balancing Problem
461(1)
20.3.4 A Solution for the Balancing Problem
462(1)
20.3.5 Applications
462(1)
20.4 Rate of Return and Reinsurance Under the Short Term Criterion
463(6)
20.4.1 General Considerations
464(1)
20.4.2 Illustrative Example
465(2)
20.4.3 Interpretation of Numerical Calculations in Example 2
467(2)
20.5 Ruin Probability Criterion when the Initial Capital is Given
469(8)
20.5.1 Approximation Based on Lundberg Inequality
469(2)
20.5.2 "Zero" Approximation
471(1)
20.5.3 Cramér-Lundberg Approximation
471(1)
20.5.4 Beekman-Bowers Approximation
472(1)
20.5.5 Diffusion Approximation
473(1)
20.5.6 De Vylder Approximation
474(1)
20.5.7 Subexponential Approximation
475(1)
20.5.8 Panjer Approximation
475(2)
20.6 Ruin Probability Criterion and the Rate of Return
477(4)
20.6.1 Fixed Dividends
477(2)
20.6.2 Flexible Dividends
479(2)
20.7 Ruin Probability, Rate of Return and Reinsurance
481(6)
20.7.1 Fixed Dividends
481(1)
20.7.2 Interpretation of Solutions Obtained in Example 5
482(2)
20.7.3 Flexible Dividends
484(1)
20.7.4 Interpretation of Solutions Obtained in Example 6
485(2)
20.8 Final remarks
487(2)
III General 489(1)
21 Working with the XQC
491(16)
Szymon Borak, Wolfgang Härdle, and Heiko Lehmann
21.1 Introduction
491(1)
21.2 The XploRe Quantlet Client
492(2)
21.2.1 Configuration
492(1)
21.2.2 Getting Connected
493(1)
21.3 Desktop
494(13)
21.3.1 XploRe Quantlet Editor
495(1)
21.3.2 Data Editor
496(5)
21.3.3 Method Thee
501(2)
21.3.4 Graphical Output
503(4)
Index 507

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program