rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780470090183

Symbolic Data Analysis Conceptual Statistics and Data Mining

by ;
  • ISBN13:

    9780470090183

  • ISBN10:

    0470090189

  • Edition: 1st
  • Format: eBook
  • Copyright: 2007-05-11
  • Publisher: WILEY
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $122.66 Save up to $8.66
  • Digital
    $114.00*
    Add to Cart

    DURATION
    PRICE
    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.

Summary

With the advent of computers, very large datasets have become routine. Standard statistical methods don’t have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis.

This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis.

  • Presents a detailed overview of the methods and applications of symbolic data analysis.
  • Includes numerous real examples, taken from a variety of application areas, ranging from health and social sciences, to economics and computing.
  • Features exercises at the end of each chapter, enabling the reader to develop their understanding of the theory.
  • Provides a supplementary website featuring links to download the SODAS software developed exclusively for symbolic data analysis, data sets, and further material.

Primarily aimed at statisticians and data analysts, Symbolic Data Analysis is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much of use to graduate students of statistical data analysis courses.

Author Biography

Lynne Billard is a multi award winning University Professor of Statistics at the University of Georgia, USA. Her areas of interest include epidemic theory, AIDS, time series, sequential analysis, and symbolic data. A former President of the American Statistical Association as well as the ENAR Regional President and International President of the International Biometric Society, Professor Billard has co-edited 6 books, published over150 papers and been actively involved in many statistical societies and national committees.

Edwin Diday is a Professor in Computer Science and Mathematics, at the Université Paris Dauphine, France. He is the author or editor of 14 previous books. He is also the founder of the symbolic data analysis field, and has led numerous international research teams in the area.

Table of Contents

1. Introduction.

References.

2. Symbolic Data.

2.1 Symbolic and Classical Data.

2.2 Categories, Concepts and Symbolic Objects.

2.3 Comparison of Symbolic and Classical Analysis.

3. Basic Descriptive Statistics: One Variate.

3.1 Some Preliminaries.

3.2 Multi-valued Variables.

3.3 Interval-valued Variables.

3.4 Multi-valued Modal variables.

3.5 Interval-valued Modal Variables.

4. Descriptive Statistics: Two or More Variates.

4.1 Multi-valued Variables.

4.2 Interval-valued Variables.

4.3 Modal Multi-valued Variables.

4.4 Modal Interval-valued Variables.

4.5 Baseball Interval-valued Dataset.

4.6 Measures of Dependence.

5. Principal Component Analysis.

5.1 Vertices Method.

5.2 Centers Method.

5.3 Comparison of the Methods.

6. Regression Analysis.

6.1 Classical Multiple Regression Model.

6.2 Multi-valued Variables.

6.3 Interval-valued Variables.

6.4 Histogram-valued Variables.

6.5 Taxonomy Variables.

6.6 Hierarchical Variables.

7. Cluster Analysis.

7.1 Dissimilarity and Distance Measures.

7.2 Clustering Structures.

7.3 Partitions.

7.4 Hierarchy-Divisive Clustering.

7.5 Hierarchy-Pyramid Clusters.

Data Index.

Author Index.

Subject Index.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program