did-you-know? rent-now

Rent More, Save More! Use code: ECRENTAL

did-you-know? rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780321884077

Thomas' Calculus Early Transcendentals

by ; ;
  • ISBN13:

    9780321884077

  • ISBN10:

    0321884078

  • Edition: 13th
  • Format: Hardcover
  • Copyright: 2014-10-08
  • Publisher: Pearson
  • View Upgraded Edition

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
  • Buyback Icon We Buy This Book Back!
    In-Store Credit: $5.25
    Check/Direct Deposit: $5.00
    PayPal: $5.00
List Price: $279.98 Save up to $69.99
  • Buy Used
    $209.99
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Summary

This text is designed for a three-semester or four-quarter calculus course (math, engineering, and science majors).

Thomas’ Calculus: Early Transcendentals, Thirteenth Edition, introduces readers to the intrinsic beauty of calculus and the power of its applications. For more than half a century, this text has been revered for its clear and precise explanations, thoughtfully chosen examples, superior figures, and time-tested exercise sets. With this new edition, the exercises were refined, updated, and expanded—always with the goal of developing technical competence while furthering readers’ appreciation of the subject. Co-authors Hass and Weir have made it their passion to improve the text in keeping with the shifts in both the preparation and ambitions of today's learners.

 

Author Biography

Joel Hass received his PhD from the University of California—Berkeley. He is currently a professor of mathematics at the University of California—Davis. He has coauthored six widely used calculus texts as well as two calculus study guides. He is currently on the editorial board of Geometriae Dedicata and Media-Enhanced Mathematics. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass’s current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking.

 

Maurice D. Weir holds a DA and MS from Carnegie-Mellon University and received his BS at Whitman College. He is a Professor Emeritus of the Department of Applied Mathematics at the Naval Postgraduate School in Monterey, California. Weir enjoys teaching Mathematical Modeling and Differential Equations. His current areas of research include modeling and simulation as well as mathematics education. Weir has been awarded the Outstanding Civilian Service Medal, the Superior Civilian Service Award, and the Schieffelin Award for Excellence in Teaching. He has coauthored eight books, including the University Calculus series and the twelfth edition of Thomas’ Calculus.

 

George B. Thomas, Jr. (late) of the Massachusetts Institute of Technology, was a professor of mathematics for thirty-eight years; he served as the executive officer of the department for ten years and as graduate registration officer for five years. Thomas held a spot on the board of governors of the Mathematical Association of America and on the executive committee of the mathematics division of the American Society for Engineering Education. His book, Calculus and Analytic Geometry, was first published in 1951 and has since gone through multiple revisions. The text is now in its twelfth edition and continues to guide students through their calculus courses. He also co-authored monographs on mathematics, including the text Probability and Statistics.

Table of Contents

1. Functions

1.1 Functions and Their Graphs

1.2 Combining Functions; Shifting and Scaling Graphs

1.3 Trigonometric Functions

1.4 Graphing with Software

1.5 Exponential Functions

1.6 Inverse Functions and Logarithms

 

2. Limits and Continuity

2.1 Rates of Change and Tangents to Curves

2.2 Limit of a Function and Limit Laws

2.3 The Precise Definition of a Limit

2.4 One-Sided Limits

2.5 Continuity

2.6 Limits Involving Infinity; Asymptotes of Graphs

 

3. Differentiation

3.1 Tangents and the Derivative at a Point

3.2 The Derivative as a Function

3.3 Differentiation Rules

3.4 The Derivative as a Rate of Change

3.5 Derivatives of Trigonometric Functions

3.6 The Chain Rule

3.7 Implicit Differentiation

3.8 Derivatives of Inverse Functions and Logarithms

3.9 Inverse Trigonometric Functions

3.10 Related Rates

3.11 Linearization and Differentials

 

4. Applications of Derivatives

4.1 Extreme Values of Functions

4.2 The Mean Value Theorem

4.3 Monotonic Functions and the First Derivative Test

4.4 Concavity and Curve Sketching

4.5 Indeterminate Forms and L’Hôpital’s Rule

4.6 Applied Optimization

4.7 Newton's Method

4.8 Antiderivatives

 

5. Integration

5.1 Area and Estimating with Finite Sums

5.2 Sigma Notation and Limits of Finite Sums

5.3 The Definite Integral

5.4 The Fundamental Theorem of Calculus

5.5 Indefinite Integrals and the Substitution Method

5.6 Substitution and Area Between Curves

 

6. Applications of Definite Integrals

6.1 Volumes Using Cross-Sections

6.2 Volumes Using Cylindrical Shells

6.3 Arc Length

6.4 Areas of Surfaces of Revolution

6.5 Work and Fluid Forces

6.6 Moments and Centers of Mass

 

7. Integrals and Transcendental Functions

7.1 The Logarithm Defined as an Integral

7.2 Exponential Change and Separable Differential Equations

7.3 Hyperbolic Functions

7.4 Relative Rates of Growth

 

8. Techniques of Integration

8.1 Using Basic Integration Formulas

8.2 Integration by Parts

8.3 Trigonometric Integrals

8.4 Trigonometric Substitutions

8.5 Integration of Rational Functions by Partial Fractions

8.6 Integral Tables and Computer Algebra Systems

8.7 Numerical Integration

8.8 Improper Integrals

8.9 Probability

 

9. First-Order Differential Equations

9.1 Solutions, Slope Fields, and Euler's Method

9.2 First-Order Linear Equations

9.3 Applications

9.4 Graphical Solutions of Autonomous Equations

9.5 Systems of Equations and Phase Planes

 

10. Infinite Sequences and Series

10.1 Sequences

10.2 Infinite Series

10.3 The Integral Test

10.4 Comparison Tests

10.5 Absolute Convergence; The Ratio and Root Tests

10.6 Alternating Series and Conditional Convergence

10.7 Power Series

10.8 Taylor and Maclaurin Series

10.9 Convergence of Taylor Series

10.10 The Binomial Series and Applications of Taylor Series

 

11. Parametric Equations and Polar Coordinates

11.1 Parametrizations of Plane Curves

11.2 Calculus with Parametric Curves

11.3 Polar Coordinates

11.4 Graphing Polar Coordinate Equations

11.5 Areas and Lengths in Polar Coordinates

11.6 Conic Sections

11.7 Conics in Polar Coordinates

 

12. Vectors and the Geometry of Space

12.1 Three-Dimensional Coordinate Systems

12.2 Vectors

12.3 The Dot Product

12.4 The Cross Product

12.5 Lines and Planes in Space

12.6 Cylinders and Quadric Surfaces

 

13. Vector-Valued Functions and Motion in Space

13.1 Curves in Space and Their Tangents

13.2 Integrals of Vector Functions; Projectile Motion

13.3 Arc Length in Space

13.4 Curvature and Normal Vectors of a Curve

13.5 Tangential and Normal Components of Acceleration

13.6 Velocity and Acceleration in Polar Coordinates

 

14. Partial Derivatives

14.1 Functions of Several Variables

14.2 Limits and Continuity in Higher Dimensions

14.3 Partial Derivatives

14.4 The Chain Rule

14.5 Directional Derivatives and Gradient Vectors

14.6 Tangent Planes and Differentials

14.7 Extreme Values and Saddle Points

14.8 Lagrange Multipliers

14.9 Taylor's Formula for Two Variables

14.10 Partial Derivatives with Constrained Variables

 

15. Multiple Integrals

15.1 Double and Iterated Integrals over Rectangles

15.2 Double Integrals over General Regions

15.3 Area by Double Integration

15.4 Double Integrals in Polar Form

15.5 Triple Integrals in Rectangular Coordinates

15.6 Moments and Centers of Mass

15.7 Triple Integrals in Cylindrical and Spherical Coordinates

15.8 Substitutions in Multiple Integrals

 

16. Integrals and Vector Fields

16.1 Line Integrals

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

16.3 Path Independence, Conservative Fields, and Potential Functions

16.4 Green's Theorem in the Plane

16.5 Surfaces and Area

16.6 Surface Integrals

16.7 Stokes' Theorem

16.8 The Divergence Theorem and a Unified Theory

 

17. Second-Order Differential Equations (online)

17.1 Second-Order Linear Equations

17.2 Nonhomogeneous Linear Equations

17.3 Applications

17.4 Euler Equations

17.5 Power-Series Solutions

 

Appendices

1. Real Numbers and the Real Line

2. Mathematical Induction

3. Lines, Circles, and Parabolas

4. Proofs of Limit Theorems

5. Commonly Occurring Limits

6. Theory of the Real Numbers

7. Complex Numbers

8. The Distributive Law for Vector Cross Products

9. The Mixed Derivative Theorem and the Increment Theorem

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program