rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780780311473

Time Frequency and Wavelets in Biomedical Signal Processing

by
  • ISBN13:

    9780780311473

  • ISBN10:

    0780311477

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1997-11-07
  • Publisher: Wiley-IEEE Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $319.94 Save up to $79.98
  • Buy Used
    $239.96
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Summary

Brimming with top articles from experts in signal processing and biomedical engineering, Time Frequency and Wavelets in Biomedical Signal Processing introduces time-frequency, time-scale, wavelet transform methods, and their applications in biomedical signal processing. This edited volume incorporates the most recent developments in the field to illustrate thoroughly how the use of these time-frequency methods is currently improving the quality of medical diagnosis, including technologies for assessing pulmonary and respiratory conditions, EEGs, hearing aids, MRIs, mammograms, X rays, evoked potential signals analysis, neural networks applications, among other topics.Time Frequency and Wavelets in Biomedical Signal Processing will be of particular interest to signal processing engineers, biomedical engineers, and medical researchers.Topics covered include: Time-frequency analysis methods and biomedical applications Wavelets, wavelet packets, and matching pursuits and biomedical applications Wavelets and medical imaging Wavelets, neural networks, and fractals

Author Biography

About the Editor Metin Akay is IEEE Press Series Editor for the IEEE Press Series in Biomedical Engineering, and a member of the IEEE Engineering in Medicine and Biology Society Publication Committee. Dr. Akay has authored Biomedical Signal Processing (Academic Press, 1994); Detection and Estimation of Biomedical Signals (Academic Press, 1996); and coauthored the most recent edition of Theory and Design of Biomedical Instruments (Academic Press, 1991). He has published a number of technical papers in the areas of noninvasive detection of coronary artery disease, early human development, and control of breathing. In addition, Dr. Akay holds two U.S. patents and has given several keynote/plenary and invited talks at international conferences, workshops, and symposiums in these areas.

Table of Contents

List of Contributors xxiii(4)
Preface xxvii
PART I TIME-FREQUENCY ANALYSIS METHODS WITH BIOMEDICAL APPLICATIONS 1(208)
Chapter 1 Recent Advances in Time-Frequency Representations: Some Theoretical Foundation
3(42)
William J. Williams
1.1. Introduction
3(5)
1.2. The Reduced Interference Distribution
8(12)
1.2.1 Ambiguity Function Relationships
8(3)
1.2.2 The Exponential Distribution
11(2)
1.2.3 Zhao-Atlas-Marks
13(1)
1.2.4 Kernel Selection for RID
13(3)
1.2.5 Design Procedures for Effective RID Kernels
16(2)
1.2.6 Limitations of RID
18(2)
1.3. Additional Distributions with Designed or Adaptive Kernels
20(5)
1.3.1 Fixed Kernel Designs
20(1)
1.3.2 Distributions with Adaptive Kernels
21(1)
1.3.3 Some Adaptive RID Results
22(3)
1.4. Noise Considerations
25(1)
1.5. Discrete Formulations and Fast Algorithms
26(7)
1.5.1 Discrete Realizations
26(3)
1.5.2 Binomial Time-Frequency Distribution Results
29(2)
1.5.3 Fast Algorithms Using Spectrogram Decompositions
31(2)
1.6. Time-Varying Filtering and Synthesis
33(4)
1.7. Analysis Window Comparisons: Wavelets and Cohen's Class
37(2)
1.8. Conclusions
39(1)
Acknowledgments
39(1)
References
39(6)
Chapter 2 Biological Applications and Interpretations of Time-Frequency Signal Analysis
45(28)
William J. Williams
2.1. Introduction
45(2)
2.2. Cohen's Class of Distributions
47(13)
2.2.1 Electrophysiological Signals and Epilepsy
48(8)
2.2.2 The Importance of Invariance in EEG Representation
56(1)
2.2.3 Event Related Potentials
56(3)
2.2.4 Other Electrophysiological Results
59(1)
2.3. Bioacoustics Examples
60(8)
2.3.1 Temporomandibular Joint Sounds
60(5)
2.3.2 Animal Sounds
65(2)
2.3.3 Heart and Muscle Sounds
67(1)
2.4. Conclusions
68(1)
Acknowledgments
68(1)
References
69(4)
Chapter 3 The Application of Advanced Time-Frequency Analysis Techniques to Doppler Ultrasound
73(28)
S. Lawrence Marple, Jr.
Tom Brotherton
Doug Jones
3.1. Introduction
73(14)
3.1.1 Adaptive Quadratic Time-Frequency Representations
76(5)
3.1.2 The Wavelet Transform Time-Frequency Representation
81(2)
3.1.3 Model-Based Approaches
83(4)
3.2. Doppler Ultrasound Data Processing Results
87(7)
3.2.1 The Short-Time Fourier Transform (STFT)
87(1)
3.2.2 Generalized Wigner-Ville and Complex Ambiguity Functions
87(1)
3.2.3 The Adaptive Optimal Kernel (AOK) TFR
87(7)
3.2.4 The Adaptive Cone Kernel (ACK) Distribution
94(1)
3.2.5 The Wavelet Transform Time-Frequency Representation
94(1)
3.2.6 Model-Based Approaches: Signal Subspace Enhancement Linear Prediction for Extended Data STFT
94(1)
3.3. Conclusions
94(5)
References
99(2)
Chapter 4 Analysis of ECG Late Potentials Using Time-Frequency Methods
101(16)
Hartmut Dickhaus
Hartmut Heinrich
4.1. Introduction
101(1)
4.2. Methods
102(4)
4.2.1 Data Acquisition and Preprocessing
102(1)
4.2.2 Comparison of Time-Frequency Representations by Simulated ECG Test Signals
103(3)
4.3. Application of Time-Frequency Transformations to Clinical ECG Data
106(6)
4.3.1 Evaluation of Time-Frequency Representations
106(4)
4.3.2 Parameter Optimization for Classification Purposes
110(2)
4.4. Conclusion
112(2)
Acknowledgment
114(1)
References
114(3)
Chapter 5 Time-Frequency Distributions Applied to Uterine EMG: Characterization and Assessment
117(30)
Jacques Duchene
Dominique Devedeux
5.1. Introduction
117(4)
5.2. Time-Frequency Distributions
121(6)
5.2.1 The Parametric Approach: AR Modeling
121(1)
5.2.2 Cohen's Class Distributions
122(2)
5.2.3 Signal-Dependent Optimal Kernel
124(1)
5.2.4 Reassignment Procedure
125(2)
5.3. Criteria for Determining the Representation Quality
127(1)
5.3.1 Back to the Initial Problem: Modulation Extraction
127(1)
5.3.2 Criteria Definition
127(1)
5.4. Results
128(11)
5.4.1 Method Validation
128(7)
5.4.2 Results on the Comparison Between Representations
135(1)
5.4.3 Robustness and Selectivity
136(3)
5.4.4 Toward a Possible Final Choice
139(1)
5.5. Some Examples on Real Signals
139(3)
5.6. Conclusion
142(1)
References
143(4)
Chapter 6 Time-Frequency Analyses of the Electrogastrogram
147(36)
Zhiyue Lin
Jiande Z. Chen
6.1. Introduction
147(3)
6.2. Electrogastrography
150(2)
6.2.1 Myoelectrical Activities in the Stomach
150(1)
6.2.2 Electrogastrogram (EGG)
151(1)
6.3. Short-Time Fourier Transform and Spectrogram
152(4)
6.3.1 Advantages and Limitations
152(2)
6.3.2 Applications
154(2)
6.4. Exponential Distribution
156(2)
6.4.1 Advantages and Limitations
156(1)
6.4.2 Applications
156(2)
6.5. Adaptive Arma Modeling
158(6)
6.5.1 Definition and Implementation
158(3)
6.5.2 Advantages and Limitations
161(1)
6.5.3 Applications
161(3)
6.6. Performance Comparison
164(9)
6.6.1 Simulation Results
164(7)
6.6.2 Clinical Applications
171(2)
6.7. Conclusions
173(4)
Acknowledgments
177(1)
References
177(6)
Chapter 7 Recent Advances in Time-Frequency and Time-Scale Methods
183(26)
Claudia Mello
Metin Akay
7.1. Introduction
183(1)
7.1.1 Notation
184(1)
7.2. Fourier Representation
184(3)
7.3. Cohen's Class Operators
187(5)
7.4. Wavelets: Frames, Multiresolution Approximation, and Beyond
192(8)
7.5. More Transformations
200(2)
7.6. Conclusions
202(1)
Acknowledgments
202(1)
References
202(7)
PART II WAVELETS, WAVELET PACKETS, AND MATCHING PURSUITS WITH BIOMEDICAL APPLICATIONS 209(214)
Chapter 8 Fast Algorithms for Wavelet Transform Computation
211(32)
Olivier Rioul
Pierre Duhamel
8.1. Introduction
211(3)
8.1.1 Classification of Wavelet Transforms
211(2)
8.1.2 Note on the Choice of the Wavelet
213(1)
8.2. Multiresolution and Two-Scale Equations
214(2)
8.2.1 Multiresolution Spaces
214(1)
8.2.2 Examples
215(1)
8.2.3 Two-Scale Equations
215(1)
8.3. The Initial Signal Approximation
216(2)
8.3.1 Remarks on Initialization and Sampling
217(1)
8.4. The Discrete Wavelet Transform (DWT)
218(1)
8.5. The DWT For WS Computation
219(4)
8.5.1 WS Computation: Mallat and Shensa Algorithm
219(2)
8.5.2 The Wavelet Approximation
221(1)
8.5.3 Using the Inverse DWT to Compute the Inverse WS (IWS)
222(1)
8.6. The DWT For CWT Computation
223(4)
8.6.1 Finer Sampling in Scale
223(2)
8.6.2 Finer Sampling in Time: Modified Shensa and "a trous" Algorithms
225(1)
8.6.3 A slightly Different Building Block
225(2)
8.6.4 Inner Product Implementation of the CWT
227(1)
8.7. Efficient Implementations of the DWT
227(3)
8.7.1 Preliminaries
228(1)
8.7.2 Reorganization of the Computations
228(2)
8.8. Faster DWT Algorithms
230(6)
8.8.1 An FFT-Based DWT Algorithm
231(2)
8.8.2 A Generalization: The Vetterli Algorithm
233(1)
8.8.3 DWT Algorithms for Short Filters
234(1)
8.8.4 Other Considerations
235(1)
8.8.5 Faster CWT Algorithms
236(1)
8.9. Other Algorithms for CWT Computation
236(4)
8.9.1 Reproducing Kernels
236(1)
8.9.2 Algorithms Using Splines
236(3)
8.9.3 Mellin-Transform-Based Algorithms
239(1)
8.10. Conclusion
240(1)
References
240(3)
Chapter 9 Analysis of Cellular Vibrations in the Living Cochlea Using the Continuous Wavelet Transform and the Short-Time Fourier Transform
243(28)
M. C. Teich, C. Heneghan
S. M. Khanna
9.1. Introduction
243(1)
9.2. Methods
244(1)
9.3. Theory
245(13)
9.3.1 The Continuous-Time Fourier Transform
245(1)
9.3.2 The Short-Time Fourier Transform
245(3)
9.3.3 The Continuous Wavelet Transform
248(2)
9.3.4 Wavelet Bases
250(3)
9.3.5 STFT and CWT Implementation
253(5)
9.4. Results
258(8)
9.5. Discussion
266(1)
9.6. Conclusion
267(1)
Acknowledgments
267(1)
References
267(4)
Chapter 10 Iterative Processing Method Using Gabor Wavelets and the Wavelet Transform for the Analysis of Phonocardiogram Signals
271(34)
Mustafa Matalgah
Jerome Knopp
Salah Mawagdeh
10.1. Introduction
271(2)
10.2. Theoretical Background
273(2)
10.2.1 The Fourier Transform and the STFT
273(1)
10.2.2 The Wigner Distribution
273(1)
10.2.3 The Wavelet Transform
274(1)
10.3. Combined Wavelet-Fourier Transform
275(3)
10.3.1 Theorem and Proof
275(3)
10.4. Computer Simulation and Real Data
278(11)
10.4.1 The Fourier Transform
279(1)
10.4.2 The Short-Time Fourier Transform
279(1)
10.4.3 The Wigner Distribution
279(1)
10.4.4 The Wavelet Transform
279(6)
10.4.5 Iterative Processing Method
285(4)
10.5. Discussion and Conclusion
289(2)
References
301(4)
Chapter 11 Wavelet Feature Extraction from Neurophysiological Signals
305(18)
Mingui Sun
Robert J. Sclabassi
11.1. Introduction
305(2)
11.2. Wavelet Transforms
307(1)
11.3. Signal-to-Noise Ratio
307(1)
11.4. Wavelet Spectral Division
308(1)
11.5. Variance
309(2)
11.6. Spectral Features in the Wavelet Extrema and Zero-Crossings
311(2)
11.7. Computation
313(2)
11.8. Experimental Results
315(3)
11.9. Discussion
318(1)
Acknowledgments
318(1)
Appendix: Expected Number of Zero Crossings
318(2)
References
320(3)
Chapter 12 Experiments with Adapted Wavelet De-Noising for Medical Signals and Images
323(24)
Ronald R. Coifman
Mladen Victor Wickerhauser
12.1. Time and Frequency Analysis
323(1)
12.2. Example Libraries of Waveforms
324(7)
12.3. Choosing the "Best Basis"
331(1)
12.4. Compression
332(1)
12.5. Adapted Waveform "De-Noising"
332(5)
12.6. Experiments with SNR Improvement
337(1)
12.6.1 Procedure
337(1)
12.6.2 Results
338(1)
12.7. Conclusion
338(7)
12.A INSTRUCTIONS AND SAMPLE OUTPUT FOR THE PROGRAM "DENOISE"
342(1)
12.A.1 Summary of the Algorithm
342(1)
12.A.2 Manual Page
342(2)
12.A.3 Output from denoise-i4-m9-t0.2 sine+8db.asc
344(1)
References
345(2)
Chapter 13. Speech Enhancement for Hearing Aids
347(20)
Janet C. Rutledge
13.1. Introduction
347(1)
13.2. Background
348(5)
13.2.1 Hearing Impairments
348(2)
13.2.2 Hearing Loss Compensation Techniques
350(2)
13.2.3 Noise Reduction
352(1)
13.2.4 Motivation for Using Wavelets
353(1)
13.3. Wavelet-Based Compression
353(5)
13.3.1 Comparison with Multiband Filter Compression
355(3)
13.4. Wavelet-Based Noise Reduction
358(5)
13.4.1 Simultaneous Compression and De-Noising
358(1)
13.4.2 Adaptive Multi-band MDL
359(2)
13.4.3 Preliminary Results
361(1)
13.4.4 Discussion
361(2)
13.5. Concluding Remarks
363(1)
References
364(3)
Chapter 14 From Continuous Wavelet Transform to Wavelet Packets: Application to the Estimation of Pulmonary Microvascular Pressure
367(22)
Mohsine Karrakchou
Murat Kunt
14.1. Introduction
367(1)
14.2. Wavelet Packets
368(4)
14.2.1 The Best-Basis Method
370(1)
14.2.2 Criteria for the Selection of the Best-Basis
370(2)
14.3. Estimation of Pulmonary Capillary Pressure
372(4)
14.3.1 The Clinical Importance of Effective Pulmonary Capillary Pressure
372(1)
14.3.2 Arterial Occlusion (AO)
373(2)
14.3.3 Limitations of the Arterial Occlusion to Apneic Transients
375(1)
14.4. How Wavelets Can Help To Solve The Problem
376(6)
14.4.1 Classical Finite Impulse Response Adaptive Filtering
376(2)
14.4.2 Fundamentals of Adaptive Filtering in Subbands
378(1)
14.4.3 The Decomposition of Mutual Wavelet Packets
379(2)
14.4.4 Implementation Scheme
381(1)
14.4.5 Experimental Results
381(1)
14.5. Conclusion
382(1)
References
383(6)
Chapter 15 In Pursuit of Time-Frequency Representation of Brain Signals
389(8)
P. J. Durka
K. J. Blinowska
15.1. Introduction
389(1)
15.2. Application of the Wavelet Transform to Evoked-Potential Analysis
390(8)
15.2.1 Method
390(2)
15.2.2 Application to EP Analysis
392(2)
15.2.3 Discussion
394(4)
15.3. Matching Pursuit Method and its Applications
398(6)
15.3.1 Method
398(2)
15.3.2 Results and Discussion
400(4)
15.4. Conclusion
404(1)
Acknowledgments
405(1)
References
405(2)
Chapter 16 EEG Spike Directors Based on Different Decompositions: A Comparative Study
407(16)
L. Senhadji
J. J. Bellanger
G. Carrault
16.1. Introduction
407(2)
16.2. Problem Statement
409(1)
16.3. Description of the Test T(1)
410(1)
16.4. Variations of S(1)
411(2)
16.4.1 Detectors Built Without Using the Spike Waveform
411(1)
16.4.2 Detectors Based on Objective Knowledge on P(1) (Other Than Their Time Duration)
412(1)
16.5. Experimentation and Performance Evaluation
413(1)
16.6. Results and Discussion
414(5)
16.7. Conclusion
419(1)
References
420(3)
PART III WAVELETS AND MEDICAL IMAGING 423(220)
Chapter 17 A Discrete Dyadic Wavelet Transform for Multidimensional Feature Analysis
425(26)
Iztok Koren
Andrew Laine
17.1. Introduction
425(1)
17.2. One-Dimensional Discrete Dyadic Wavelet Transform
426(11)
17.2.1 Wavelet Transform
426(4)
17.2.2 Implementation
430(6)
17.2.3 Remarks
436(1)
17.3. Multidimensional Discrete Dyadic Wavelet Transform
437(5)
17.3.1 Wavelet Transform
437(3)
17.3.2 Implementation
440(1)
17.3.3 Remarks
441(1)
17.4. Applications
442(6)
17.4.1 Contrast Enhancement in Digital Mammography
442(3)
17.4.2 Edge Detection in Echocardiographic Image Sequences
445(2)
17.4.3 Remarks
447(1)
17.5. Conclusion
448(1)
Acknowledgment
448(1)
References
448(3)
Chapter 18 Hexagonal QMF Banks and Wavelets
451(22)
Sergio Schuler
Andrew Laine
18.1. Introduction
451(1)
18.2. Hexagonal Sampling System
451(13)
18.2.1 Hexagonal Systems
452(2)
18.2.2 Up-Sampling and Down-Sampling in Hexagonal Systems
454(3)
18.2.3 Analysis Synthesis Filter Banks in Hexagonal Systems
457(3)
18.2.4 Redundant Analysis Synthesis Filter Banks in Hexagonal Systems
460(2)
18.2.5 The Discrete Fourier Transform in Hexagonal Systems
462(2)
18.3. Implementation
464(7)
18.3.1 Image Support in Hexagonal Systems
464(3)
18.3.2 Multiresolution Representations in Hexagonal Systems
467(2)
18.3.3 Overcomplete Multiresolution Representations in Hexagonal Systems
469(2)
Acknowledgment
471(1)
References
472(1)
Chapter 19 Inversion of the Radon Transform under Wavelet Constraints
473(26)
Berkman Sahiner
Andrew E. Yagle
19.1. Introduction
473(1)
19.2. Inverse Radon Transforms and Discrete Wavelet Transforms
474(4)
19.2.1 The Inverse Radon Transform
474(1)
19.2.2 The Discrete Wavelet Transform
475(2)
19.2.3 The Unsubsampled Wavelet Transform
477(1)
19.3. Filtering with Use of DWT Constraints
478(8)
19.3.1 Problem Definition
480(1)
19.3.2 Constraints on a Single Wavelet
480(2)
19.3.3 Constraints on Several Sub-Wavelets
482(1)
19.3.4 Examples and Discussion
483(3)
19.4. Image Restoration with Use of UWT Constraints
486(10)
19.4.1 Wavelet Interpretation of the Missing Angle Problem
487(1)
19.4.2 Interpolation of Low-Resolution Missing Data
488(2)
19.4.3 Summary of the Algorithm
490(1)
19.4.4 Numerical Examples
491(5)
19.5. Conclusion
496(1)
References
496(3)
Chapter 20 Wavelets Applied to Mammograms
499(20)
Walter B. Richardson, Jr.
20.1. Introduction
499(1)
20.2. Wavelets and Multiresolution Analysis
500(4)
20.3. Data Compression and Teleradiology
504(4)
20.4. Feature Enhancement and Classification
508(2)
20.5. Wavelets, Fractals, and Texture
510(2)
20.6. De-Noising
512(3)
20.7. Discussion and Conclusions
515(1)
Acknowledgments
516(1)
References
516(3)
Chapter 21 Hybrid Wavelet Transform for Image Enhancement for Computer-Assisted Diagnosis and Telemedicine Applications
519(14)
Laurence P. Clarke
Wei Qian
Maria Kallergi
Priya Venugopal
Robert A. Clark
21.1. Introduction
519(2)
21.2. Design of a Hybrid Filter
521(4)
21.2.1 Introduction
521(1)
21.2.2 Hybrid Filter Architecture
521(1)
21.2.3 Adaptive Multistage Nonlinear Filtering
522(2)
21.2.4 Wavelet Decomposition and Reconstruction
524(1)
21.3. Experimental Results
525(5)
21.3.1 Influence of Preprocessing for a Hybrid Filter
525(2)
21.3.2 Influence of Sensor Resolution
527(1)
21.3.3 Influence of Linear Versus Order Statistic Operator
528(2)
21.4. Conclusion
530(1)
References
531(2)
Chapter 22 Medical Image Enhancement Using Wavelet Transform and Arithmetic Coding
533(16)
Pongskorn Saipetch
Bruce K. T. Ho
Ramesh K. Panwar
Marco Ma
22.1. Introduction
533(1)
22.2. Wavelet Transform
534(3)
22.2.1 Wavelet Transform of Images
534(3)
22.3. Quantization
537(1)
22.4. Arithmetic Coding
538(1)
22.5. Experiments
539(2)
22.6. Results
541(4)
22.6.1 Lossly Compression
541(3)
22.6.2 Lossless Compression
544(1)
22.7. Conclusions
545(1)
References
546(3)
Chapter 23 Adapted Wavelet Encoding in Functional Magnetic Resonance Imaging
549(56)
Dennis M. Healy, Jr.
Douglas W. Warner
John B. Weaver
23.1. Parsimonious Representations of Images
551(3)
23.2. Standard MRI and Fourier Transforms
554(2)
23.3. Alternatives to the Fourier Basis
556(4)
23.4. Finding Approximate K-L Bases
560(2)
23.5. Adapted Waveform Encoding in MRI
562(4)
23.5.1 Wavelet Encoding
563(2)
23.5.2 More General Bases for Encoding
565(1)
23.5.3 Choosing a Basis for Fast MRI Encoding
565(1)
23.6. K-L Bases in MRI
566(4)
23.6.1 K-L Waveform Encoding
566(1)
23.6.2 Simulation Results
567(2)
23.6.3 Implementation and Practical Limitations of K-L Encoding
569(1)
23.7. Approximate K-L Bases in MRI
570(7)
23.7.1 Approximate K-L Waveform Encoding
571(1)
23.7.2 Application to Dynamical Imaging
571(5)
23.7.3 Two-Dimensional Approximate K-L Encoding
576(1)
23.8. Conclusion
577(2)
Appendix A: Encoding in MRI
579(20)
A.1 Nuclear Magnetic Resonance
581(3)
A.2 Imaging
584(7)
A.3 Imaging Time and SNR
591(3)
A.4 Adapted Waveform Encoding in MRI
594(1)
A.5 MRI Encoding with a Basis
594(3)
A.6 MR Phosphorus Spectroscopy
597(2)
References
599(6)
Chapter 24 A Tutorial Overview of a Stabilization Algorithm for Limited-Angle Tomography
605(18)
Tom Olson
24.1. Introduction
605(1)
24.2. Background and Definitions
606(3)
24.2.1 The Radon Transform
606(1)
24.2.2 Tomography and Limited-Angle Tomography
607(2)
24.2.3 Physical Motivation and Prior Work
609(1)
24.3. Limitations of the Singular Value Decomposition
609(2)
24.3.1 Unbounded Inverses and Approximate Identities
609(1)
24.3.2 Uncorrelated, Exact Bases versus Induced Correlations and Redundant Bases
610(1)
24.3.3 Decreasing Signal-to-Noise Ratio
611(1)
24.4. Mollification Methods
611(5)
24.4.1 Szego's Theory for Finite Toeplitz Operators
611(1)
24.4.2 Limited-Angle Spectra
612(2)
24.4.3 Uncertainty Principles and Signal Recovery
614(1)
24.4.4 Nonlinear Constraints, Induced Correlations, and POCS
615(1)
24.5. The Algorithm
616(1)
24.6. Numerical Results
617(3)
24.7. Conclusion
620(1)
Acknowledgment
621(1)
References
621(2)
Chapter 25 Wavelet Compression of Medical Images
623(20)
Armando Manduca
25.1. Introduction
623(1)
25.2. Discrete Wavelet Transforms
624(2)
25.3. Image Compression with Wavelets
626(9)
25.3.1 Implementation
628(1)
25.3.2 Set Partitioning in Hierachical Trees
629(1)
25.3.3 Sample Compressions
630(2)
25.3.4 Compression of 3-D Images
632(2)
25.3.5 Preserving Arbitrary Regions
634(1)
25.4. Discussion
635(5)
25.4.1 Comparisons with JPEG
636(2)
25.4.2 Human Visual System Response
638(1)
25.4.3 Medical Acceptance of Lossy Compression
638(1)
25.4.4 Related Advanced Techniques
639(1)
References
640(3)
PART IV WAVELETS, NEURAL NETWORKS, AND FRACTALS 643(86)
Chapter 26 Single Side Scaling Wavelet Frame and Neural Network
645(24)
Qinghua Zhang
26.1. A Short Introduction to Neural Networks
645(2)
26.2. Wavelet Series and Wavelet Network
647(1)
26.3. Double Side Scaling Wavelet Frames
648(3)
26.3.1 A Sufficient Condition
649(1)
26.3.2 Radial Case
650(1)
26.4. Single Side Scaling Wavelet Frame
651(3)
26.4.1 A Sufficient Condition for Single Side Scaling Wayelet Frame
651(2)
26.4.2 Radial Case
653(1)
26.4.3 Some Practical Considerations
653(1)
26.5. Combining Wavelet and Neural Network
654(7)
26.5.1 Modeling Nonlinear Systems
654(1)
26.5.2 Sparse Data and Thinned Wavelet Frame
655(1)
26.5.3 Regression Analysis Applied to Wavelets
656(2)
26.5.4 The Network Size
658(1)
26.5.5 Additional Optimization
659(1)
26.5.6 Implementation of the Wavelet Network
659(1)
26.5.7 Numerical Example
660(1)
26.6. Conclusion
661(1)
Appendix A: Proof of Theorem 3
662(2)
Appendix B: Proof of Theorem 4
664(2)
Appendix C: Some Comments on Theorem 4
666(1)
References
666(3)
Chapter 27 Analysis of Evoked Potentials Using Wavelet Networks
669(16)
Hartmut Heinrich
Hartmut Dickhaus
27.1. Introduction
669(1)
27.2. Wavelet Networks
670(8)
27.2.1 Basic Method
670(3)
27.2.2 Constraints for a Uniform WN Parameterization
673(1)
27.2.3 Advanced WN Learning Algorithm
674(4)
27.3. Wavelet Nets Applied to EP Signals
678(4)
27.3.1 Clinical and Methodical Background
678(1)
27.3.2 Data Acquisition and Preprocessing
679(1)
27.3.3 Parameterization and Discrimination by Means of WN Parameters
679(3)
27.4. Conclusion
682(1)
References
683(2)
Chapter 28 Self-Organizing Wavelet-Based Neural Networks
685(18)
Kunikazu Kobayashi
28.1. Introduction
685(2)
28.2. Preliminaries
687(2)
28.2.1 Wavelet Transform
687(1)
28.2.2 Inversion Formula
687(1)
28.2.3 Windows
688(1)
28.3. Network Expression
689(1)
28.4. Function Approximation and Network Optimization
689(5)
28.4.1 Function Approximation Problem
690(1)
28.4.2 Self-Organization of Networks
691(2)
28.4.3 Minimization of Errors
693(1)
28.5. Computer Simulations
694(7)
28.5.1 Simulation I
695(2)
28.5.2 Simulation II
697(1)
28.5.3 Simulation III
698(3)
28.6. Conclusion
701(1)
References
701(2)
Chapter 29 On Wavelets and Fractal Processes
703(16)
Patrick Flandrin
29.1. Introduction
703(1)
29.2. Fractal Processes
704(1)
29.3. Wavelets and Fractional Brownian Motion
705(4)
29.3.1 The Fractional Brownian Motion Model
705(1)
29.3.2 Wavelet Analysis of fBm
705(1)
29.3.3 Wavelet Estimation of the Hurst Exponent
706(2)
29.3.4 Some Further Remarks on Wavelets and fBm
708(1)
29.4. Wavelets and Point Processes
709(2)
29.4.1 Some Models
709(1)
29.4.2 A Wavelet-Based Fano Factor
710(1)
29.5. Further Comments and Extensions
711(3)
29.5.1 On Implementation
711(1)
29.5.2 On Time-Dependent Fractal Processes
712(1)
29.5.3 On Multifractal Processes
713(1)
29.6. Conclusion
714(1)
Acknowledgment
715(1)
References
715(4)
Chapter 30 Fractal Analysis of Heart Rate Variability
719(10)
Russell Fischer
Metin Akay
30.1. Introduction
719(1)
30.2. The fBm Model
720(1)
30.3. The Autocorrelation Function for DFGN
720(1)
30.4. The Probability Density Function for DFGN
721(1)
30.5. A Maximum Likelihood Estimator for DFGN
721(1)
30.6. PSD Estimators for fBm and DFGN
722(1)
30.7. A Wavelet Estimator for DFGN
723(2)
30.8. The Heart Rate Variability Signal
725(2)
References
727(2)
Index 729(10)
Editor's Biography 739

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program