did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780130422040

Transport Phenomena in Biological Systems

by ; ;
  • ISBN13:

    9780130422040

  • ISBN10:

    0130422045

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2009-01-01
  • Publisher: Prentice Hall
  • View Upgraded Edition
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $157.00

Summary

For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Table of Contents

Prefacep. xix
Introductionp. 1
Introduction to Physiological Fluid Mechanicsp. 51
Conservation Relations and Momentum Balancesp. 53
Conservation Relations for Fluid Transport, Dimensional Analysis, and Scalingp. 118
Approximate Methods for the Analysis of Complex Physiological Flowp. 167
Fluid Flow in the Circulation and Tissuesp. 211
Fundamentals and Applications of Mass Transport in Biological Systemsp. 255
Mass Transport in Biological Systemsp. 257
Diffusion with Convection or Electrical Potentialsp. 338
Transport in Porous Mediap. 387
Transvascular Transportp. 427
The Effect of Mass Transport upon Biochemical Interactionsp. 449
Mass Transport and Biochemical Interactionsp. 451
Cell Surface Ligand-Receptor Kinetics and Molecular Transport within Cellsp. 509
Cell Adhesionp. 568
Transport in Organsp. 607
Transport of Gases between Blood and Tissuesp. 609
Transport in the Kidneysp. 639
Drug Transport in Solid Tumorsp. 689
Transport in Organs and Organismsp. 718
Mathematical Backgroundp. 744
Review of Calculus and Solution of Ordinary Differential Equationsp. 744
Solution of Partial Differential Equations by the Method of Separation of Variablesp. 752
Basics of Vectors and Tensorsp. 758
Introduction to MATLABp. 766
Referencesp. 772
Indexp. 773
Table of Contents provided by Rittenhouse. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

The transport of energy, mass, and momentum is essential to the function of living systems. Changes in these processes often underlie pathological conditions. Transport phenomena are also central to the operation of instrumentation used to analyze living systems, and to many of the technological interventions used to repair or improve tissues or organs. Transport processes are manifest from the smallest spatial scales of molecular dimensions to the large scales of whole organs and of organisms themselves. They also span the minute time scales of individual chemical events to the lifetimes of living systems. As scientific and technological advancements have shrunk the temporal and spatial scales of observation and understanding of living systems, attention to attendant transport processes at those scales has followed suit. The objective study of biological transport phenomena began historically in the field of physiology and, indeed, helped define that field. Today, the engineering application of biological transport phenomena contributes to research advances in physiology, immunology, and cell and molecular biology. Thus, transport processes are important considerations in basic research related to molecule, organelle, cell and organ function; the design and operation of devices, such as filtration units for kidney dialysis, high density cell culture and biosensors; and applications including rug and gene delivery, biological signal transduction, and tissue engineering. Clearly, attention to the basic mechanisms of transport processes and, concomitantly, their biological and biomedical contexts, is important to curricula for educating biomedical engineers. Teaching undergraduate and graduate students in bioengineering about transport phenomena in living systems is challenging. This teaching must integrate the development of fundamental principles of transport processes, the mathematical expression of these principles and the solution of transport equations, along with characterization of composition, structure and function of the living systems to which they are applied. The overwhelming majority of textbooks on transport processes are oriented primarily toward chemical and mechanical engineers, and lack applications and descriptions of biological and biomedical contexts. While many of these texts are excellent, there is a need for a book that integrates biological and engineering concepts in the development of the transport equations and, meanwhile, provides detailed and current applications. It is our goal that this text meets that need. The materials in this textbook will help to develop both skills and contextual knowledge for engineers, enabling them to establish and critically analyze models of biological transport and reaction processes. We have sought to present engineering fundamentals and biological contexts in a unified way. The book covers topics in fluid mechanics, mass transport, and biochemical interactions and reactions. Inclusion of the latter has great biological and biomedical motivation, since so many relevant processes and technologies involve chemical reactions. Each engineering concept is motivated by specific biological problems. Immediately after the concept is developed, biological and/or biomedical applications are presented. In this way, the student,4an gain an understanding of the specific topic presented, as well as its application to important problems in biology and medicine. Each chapter contains a number of examples and homework problems, that either elaborate upon problems discussed in the text or address new biomedical questions. Problems and examples include analytical as well as numerical solutions. We emphasize analytical solutions because they often provide physical insights that are important for introductory material, even if such insights provide only first-order levels of understanding. More complex problems that require numerical solution are presented and the u

Rewards Program