rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780262049375

Multi-Agent Reinforcement Learning Foundations and Modern Approaches

by ; ;
  • ISBN13:

    9780262049375

  • ISBN10:

    0262049376

  • Format: Hardcover
  • Copyright: 2024-12-17
  • Publisher: The MIT Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $74.66 Save up to $29.86
  • Rent Book $44.80
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Multi-Agent Reinforcement Learning Foundations and Modern Approaches [ISBN: 9780262049375] for the semester, quarter, and short term or search our site for other textbooks by Albrecht, Stefano V.; Christianos, Filippos; Schäfer, Lukas. Renting a textbook can save you up to 90% from the cost of buying.

Summary

The first comprehensive introduction to Multi-Agent Reinforcement Learning (MARL), covering MARL’s models, solution concepts, algorithmic ideas, technical challenges, and modern approaches.

Multi-Agent Reinforcement Learning (MARL), an area of machine learning in which a collective of agents learn to optimally interact in a shared environment, boasts a growing array of applications in modern life, from autonomous driving and multi-robot factories to automated trading and energy network management. This text provides a lucid and rigorous introduction to the models, solution concepts, algorithmic ideas, technical challenges, and modern approaches in MARL. The book first introduces the field’s foundations, including basics of reinforcement learning theory and algorithms, interactive game models, different solution concepts for games, and the algorithmic ideas underpinning MARL research. It then details contemporary MARL algorithms which leverage deep learning techniques, covering ideas such as centralized training with decentralized execution, value decomposition, parameter sharing, and self-play. The book comes with its own MARL codebase written in Python, containing implementations of MARL algorithms that are self-contained and easy to read. Technical content is explained in easy-to-understand language and illustrated with extensive examples, illuminating MARL for newcomers while offering high-level insights for more advanced readers.

  • First textbook to introduce the foundations and applications of MARL, written by experts in the field
  • Integrates reinforcement learning, deep learning, and game theory
  • Practical focus covers considerations for running experiments and describes environments for testing MARL algorithms
  • Explains complex concepts in clear and simple language
  • Classroom-tested, accessible approach suitable for graduate students and professionals across computer science, artificial intelligence, and robotics 
  • Resources include code and slides 

Author Biography

Stefano V. Albrecht is Associate Professor in the School of Informatics at the University of Edinburgh, where he leads the Autonomous Agents Research Group. His research focuses on the development of machine learning algorithms for autonomous systems control and decision making, with a particular focus on deep reinforcement learning and multi-agent interaction.

Filippos Christianos is a research scientist in multi-agent deep reinforcement learning focusing on how MARL algorithms can be used efficiently and the author of multiple popular MARL-focused code libraries. 

Lukas Schäfer is a researcher focusing on the development of more generalizable, robust, and sample-efficient decision making using deep reinforcement learning, with a particular focus on multi-agent reinforcement learning.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program