did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780792366256

Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics

by ; ;
  • ISBN13:

    9780792366256

  • ISBN10:

    0792366255

  • Format: Hardcover
  • Copyright: 2000-11-01
  • Publisher: Kluwer Academic Pub
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $237.00 Save up to $203.59
  • Digital
    $72.39
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Quantum mechanical laws are well documented at the level of a single or a few atoms and are here extended to systems containing 102 to 1010 electrons - still much smaller than the usual macroscopic objects, but behaving in a manner similar to a single atom. Besides the purely theoretical interest, such systems pose a challenge to the achievement of the ultimate microelectronic applications. The present volume presents an up-to-date account of the physics, technology and expected applications of quantum effects in solid-state mesoscopic structures. Physical phenomena include the Aharonov-Bohm effect, persistent currents, Coulomb blockade and Coulomb oscillations in single electron devices, Andreev reflections and the Josephson effect in superconductor/normal/superconductor systems, shot noise suppression in microcontacts and contact resistance quantisation, and overall quantum coherence in mesoscopic and nanoscopic structures related to the emerging physics of quantum computation in the solid-state environment.

Table of Contents

Preface xiii
Part I QUANTUM CONTACTS AND WIRES
Nonlinear Phenomena in Metallic Contacts
3(24)
I. O. Kulik
Introduction
3(4)
Atomic contacts
7(3)
Ballistic microcontacts
10(4)
Inelastic scattering and J--V nonlinearity in semiclassical contacts
14(6)
Phonon trapping and relaxation
20(2)
Thermal contacts and hot spots
22(5)
Conductance Channels of Gold Atomic-Size Contacts
27(8)
E. Scheer
W. Belzig
M. H. Devoret
D. Esteve
C. Urbina
Introduction
27(1)
Determination of the transmission coefficients
28(1)
Experimental techniques
29(6)
Experiments on Conductance at The Atomic Scale
35(16)
J. M. van Ruitenbeek
Introduction
35(1)
Landauer formalism for electron transport
36(1)
Atomic-size contacts
37(2)
Superconducting subgap structure
39(4)
Shot noise
43(3)
Nearly-free-electron gas metals
46(1)
Conclusions
47(4)
Why Does A Metal-Superconductor Junction Have A Resistance?
51(10)
C. W. J. Beenakker
Introduction
51(1)
Andreev reflection and optical phase-conjugation
52(2)
The resistance paradox
54(4)
How big is the resistance?
58(1)
Conclusion
59(2)
Point-Contact Spectroscopy of Superconductors
61(18)
I. K. Yanson
Introduction
61(2)
Point-contact spectroscopy in the normal state
63(3)
Excess current: Dependence on purity
66(2)
Elastic contribution to excess current
68(2)
Inelastic processes in excess current
70(2)
Nonequilibrium phenomena
72(3)
Concluding remarks
75(4)
Atomic Structure, Quantized Electrical and Thermal Conductance of Nanowires
79(16)
S. Ciraci
Introduction
79(2)
Atomic structure of stretching metallic nanowires
81(4)
Electron transport in nanowires
85(4)
Quantized thermal conductance
89(3)
Conclusions
92(3)
Magnetotransport and Magnetocohesion in Nanowires
95(10)
E. N. Bogachek
A. G. Scherbakov
U. Landman
Part II QOULOMB BLOCKADE AND THE KONDO PROBLEM
Mesoscopic Fluctuations of Co-Tunneling and Kondo Effect in Quantum Dots
105(24)
L. I. Glazman
Introduction
105(4)
Energy scales involved in the single-electron tunneling effects
109(2)
The constant interaction model and its justification
111(4)
Activationless transport through a blockaded quantum dot
115(5)
Kondo conductance of a blockaded quantum dot
120(4)
Conclusion
124(5)
Quantum Smearing of Coulomb Blockade
129(16)
K. A. Matveev
Introduction
129(2)
Perturbation theory
131(3)
The shape of the steps of Coulomb staircase
134(7)
Summary
141(4)
Coulomb Blockade in Single Tunnel Junction Connected to Nanowire and Carbon Nanotube
145(16)
J. Haruyama
I. Takesue
Y. Sato
K. Hijioka
Introduction
145(1)
Sample Structures
146(1)
CB in an array of STJ/Ni-nanowire (Al/Al2O3/Ni-nanowire)
147(7)
CB in an array of STJ/MWNT (Al/Al2O3/MWNT)
154(5)
Conclusion
159(2)
Transport Through Quantum Dots and The Kondo Problem
161(8)
J. Konig
T. Pohjola
H. Schoeller
G. Schon
Introduction
162(1)
Model Hamiltonian
162(1)
Relation to the Kondo model
163(1)
Real-time transport theory
163(1)
Resonant-tunneling approximation: Zero-bias anomalies and magnetic-field dependence
164(1)
Two-level quantum dot
165(1)
Real-time renormalization-group approach
166(3)
Coulomb Blockade in Quantum Dots with Overlapping Resonances
169(16)
P. G. Silvestrov
Y. Imry
Introduction. The double-slit experiment
169(4)
Semi-chaotic quantum dots
173(2)
Coulomb blockade for a single broad level
175(4)
Kondo effect
179(2)
Conclusions
181(4)
Part III DEPHASING AND SHOT NOISE
Dephasing and Shot-Noise in Mesoscopic Systems
185(26)
Y. Levinson
Y. Imry
Introduction
185(1)
General picture of quantum-mechanical dephasing
186(4)
Physical derivation of the shot noise from the Landauer formulation
190(4)
Formal derivation of the shot noise from scattering states formulation
194(5)
Dephasing by a current-carrying quantum detector
199(2)
Dephasing due to edge states
201(2)
The detectability of T = O noise
203(3)
Dephasing when T → 0
206(5)
Charge Fluctuations and Dephasing in Coulomb Coupled Conductors
211(32)
M. Buttiker
Introduction
211(3)
The mesoscopic capacitor (macroscopic backgate)
214(5)
Role of external impedance
219(1)
Equilibrium dephasing in multilead systems
219(2)
Charge relaxation resistance of a quantum point contact
221(3)
Charge fluctuations and the scattering matrix
224(2)
The mesoscopic capacitor: Mesoscopic gate
226(3)
Nonequilibrium charge fluctuations and dephasing
229(2)
The resistance Rv of a quantum point contact
231(2)
Local charge fluctuations
233(1)
Charge fluctuations of an edge state
234(3)
Discussion
237(6)
Transport and Noise in Multiterminal Diffusive Conductors
243(8)
E. V. Sukhorukov
D. Loss
Introduction
243(1)
Formalism
244(1)
Applications
245(6)
Memory Effects in Stochastic Ratchets
251(8)
B. Tanatar
E. Kececioglu
M. C. Yalabik
Introduction
251(1)
Theoretical background
252(1)
Results and discussions
253(6)
Part IV AHARONOV-BOHM EFFECT AND VORTICES
Non-Decaying Currents in Normal Metals
259(24)
I. O. Kulik
Introduction
259(1)
Persistent current in a long metallic stripe
260(3)
Persistent currents in metallic rings and cylinders
263(6)
Fluctuations of persistent current
269(1)
Transverse persistent current
270(3)
Berry's phase and oscillatory spin dynamics in mesoscopic rings
273(4)
Exotic Aharonov-Bohm and Berry-phase effects
277(6)
Persistent Current in a Mesoscopic Ring with Strongly Coupled Polarons
283(10)
M. Bayindir
I. O. Kulik
Introduction
283(1)
Persistent currents in mesoscopic rings
284(2)
Electron-phonon interaction in the ring
286(4)
Conclusions
290(3)
Superfluidity and Planar Vortices in Systems with Pairing of Spatially Separated Electrons and Holes
293(8)
S. I. Shevchenko
Introduction
293(1)
Planar vortices in systems with spatially paired electrons
294(7)
Part V JOSEPHSON EFFECT
Weakly Coupled Macroscopic Quantum Systems: Likeness with Difference
301(20)
A. Barone
Introduction
301(1)
Quantum liquids
302(3)
Josephson effect in different macroscopic quantum systems
305(8)
More on superconducting vs BEC Josephson weak links
313(8)
Macroscopic Quantum Phenomena in Josephson Systems
321(8)
P. Silvestrini
Introduction
321(1)
Outline of the theory
321(3)
Experiments
324(1)
Conclusions
325(4)
Vortex Confinement Phenomena in Mesoscopic Superconductors
329(20)
V. V. Moshchalkov
V. Bruyndoncx
L. Van Look
J. Bekaert
M. J. Van Bael
Y. Bruynseraede
S. J. Bending
Introduction
329(1)
Mesoscopic superconducting dots of different connectivity
330(4)
Shapiro steps in a superconducting film with an antidot lattice
334(3)
Pinning phenomena in Pb films with a regular lattice of magnetic Au/Co/Au dots
337(12)
Part VI MESOSCOPIC SUPERCONDUCTIVITY
Superconducting Nanoparticles and Nanowires
349(12)
M. Tinkham
Introduction
349(1)
Superconductivity in nanoparticles: The superconducting size effect
350(1)
Superconducting nanowires: A dissipative phase transition
351(10)
Superconductivity in Ultrasmall Grains: Introduction to Richardson's Exact Solution
361(10)
J. von Delft
F. Braun
Introduction
361(1)
Richardson's exact solution
362(6)
Comparison with other approaches
368(1)
Conclusions
369(2)
Superconductivity in Ultrasmall Metallic Particles
371(10)
H. Boyaci
Z. Gedik
I. O. Kulik
Introduction
371(1)
The model
372(5)
Results
377(4)
Tunneling Spectroscopy of Metallic Quantum Dots
381(18)
M. Tinkham
Introduction
381(1)
Theoretical overview
382(1)
Sample preparation
383(2)
Parameter evaluation by Coulomb staircase measurements
385(2)
Discrete level spectra in normal grains
387(2)
Effects of electron interactions: Clusters and finite level widths
389(4)
Effects of shell structure, spin-orbit, and exchange interactions
393(6)
Part VII QUANTUM COMPUTATION
Quantum Computation and Spin Electronics
399(30)
D. P. DiVincenzo
G. Burkard
D. Loss
E. V. Sukhorukov
Brief survey of the history of quantum computing
399(1)
Creating the quantum computer
400(3)
Solid state proposals
403(14)
Quantum communication with electrons
417(8)
Conclusion
425(4)
Decoherence of the Superconducting Persistent Current Qubit
429(10)
L. Tian
L. S. Levitov
C. H. van der Wal
J. E. Mooij
T. P. Orlando
S. Lloyd
C. J. P. M. Harmans
J. J. Mazo
Introduction
429(2)
Basic approach
431(2)
Estimates for particular mechanisms
433(3)
Other mechanisms
436(1)
Summary
437(2)
Quantum Computing and Josephson Junction Circuits
439(10)
Y. Makhlin
G. Schon
A. Shnirman
Introduction
439(1)
A model quantum computer
440(1)
Josephson junction quantum bits
441(2)
Coupled qubits
443(1)
Environment and dephasing
444(1)
Discussion
444(5)
Part VIII NANO-ELECTRONICS
Recent Advances in Nanotechnology: An Overview
449(8)
R. Ellialtioglu
Quantum Electron Optics and Its Applications
457(10)
W. D. Oliver
R. C. Liu
J. Kim
X. Maitre
L. Di Carlo
Y. Yamamoto
Introduction
457(1)
Equilibrium and non-equilibrium noise
458(2)
Hanbury Brown and Twiss-type intensity interferometer
460(1)
Quantum interference in electron collision
461(2)
Electron entanglement
463(2)
Summary
465(2)
Physics and Applications of Photonic Crystals
467(12)
B. Temelkuran
M. Bayindir
E. Ozbay
Introduction
467(1)
Layer-by-layer photonic crystal
468(2)
Resonant cavity enhanced detectors
470(3)
Waveguide
473(4)
Conclusion
477(2)
Conductance in Metallic Submicron Cross-Junctions
479(6)
R. Ellialtioglu
I. I. Kaya
Introduction
479(1)
Hot-spot transistor
480(1)
Experiment
481(2)
Conclusion
483(2)
Author Index 485(2)
Citation Index 487

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program