did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780471146148

Active and Quasi-Optical Arrays for Solid-State Power Combining

by ;
  • ISBN13:

    9780471146148

  • ISBN10:

    0471146145

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1997-04-11
  • Publisher: Wiley-Interscience
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $259.14 Save up to $0.30
  • Buy New
    $258.84
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

A detailed and timely overview of recent developments in active quasi-optical arrays In recent years, active quasi-optics has emerged as one of the most dynamic fields of contemporary research--a highly unconventional approach to microwave and millimeter-wave power generation that integrates solid-state devices into a single quasi-optical component in which all devices operate in unison. This book defines and describes active quasi-optical arrays, reviews the current state of the art, and answers numerous basic and technical questions on the design, analysis, and application of these devices. The contributors to this volume are leading researchers in the field who present results and views from government, industrial, and university laboratories and offer a balanced discussion on a high technical level. They also offer insight into the applicability and commercial value of this technology for military systems, manufacturing processes, communications, and consumer products. Topics presented include: * Analysis and design methodologies for quasi-optical active arrays * Power-added and power-combining efficiencies of quasi-optical amplifier arrays * Phase-shifterless beam steering in oscillator and amplifier arrays * Integrating quasi-optical active components into a compact subsystem * Design and fabrication of quasi-optical oscillators, amplifiers, multipliers, and tuners * Characterization and measurement of quasi-optical components

Author Biography

ROBERT A. YORK, PhD, is Associate Professor of Electrical and Computer Engineering at the University of California, Santa Barbara. ZOYA B. POPOVIĆ, PhD, is Associate Professor of Electrical and Computer Engineering at the University of Colorado in Boulder.

Table of Contents

Contributors xiii(2)
Foreword xv(4)
Preface xix
1 Quasi-Optical Power Combining
1(48)
Robert A. York
1 Applications Potential and Technological Constraints
2(3)
2 Power-Combining Circuits
5(4)
3 Spatial or Quasi-Optical Arrays
9(16)
3.1 Maximum Power Density
15(2)
3.2 Quasi-Optical Array Topologies
17(4)
3.3 Planar Antennas for Arrays
21(4)
4 Analytical Techniques for Quasi-Optical Arrays
25(8)
4.1 Passive Array Analysis
25(3)
4.2 Active and Nonlinear Circuit Analysis
28(3)
4.3 Nonlinear Dynamics
31(2)
5 Array Characterization and Figures of Merit
33(9)
5.1 Aperture Efficiency and Polarizers
34(3)
5.2 Dominant-Mode Coupling
37(2)
5.3 Effective Radiated Power of Sources/Transmitters
39(1)
5.4 Gain of Beam Amplifiers
40(2)
5.5 Combining Efficiency
42(1)
6 Conclusions
42(2)
Acknowledgments
44(1)
References
44(5)
2 Spatial Power Combining
49(36)
Mark A. Gouker
1 Feeding and Combining Approaches
50(3)
2 Trade-Offs for Spatial Power-Combined Amplifiers and Transmitters
53(13)
2.1 System Configurations
53(2)
2.2 Array Architecture (Tile Approach or Tray Approach)
55(3)
2.3 Circuit-Fed Versus Spatially Fed
58(3)
2.4 Grid Arrays Versus Distinct Component Arrays
61(2)
2.5 Monolithic Versus Hybrid Construction
63(2)
2.6 Trade-Off Summary
65(1)
3 Losses in Spatial Power-Combining Systems
66(2)
4 Circuit-Fed/Spatially Combined Amplifier Arrays
68(14)
4.1 Differences from Phased Arrays
68(1)
4.2 Components for Arrays
69(3)
4.3 Examples
72(10)
Acknowledgments
82(1)
References
83(2)
3 Active Integrated Antennas
85(50)
Siou Teck Chew
Tatsuo Itoh
1 Design Issues
86(10)
1.1 Size of Antenna and Active Devices
86(1)
1.2 Surface Wave Excitation
86(2)
1.3 Heat Sinking
88(1)
1.4 Free-Space Mutual Coupling
88(3)
1.5 Unwanted Radiation from the RF Circuit
91(1)
1.6 Antenna as a Resonator in Oscillator Design
92(1)
1.7 Nonferrite Device Integration
93(1)
1.8 Antenna Dynamic Load
94(1)
1.9 Lack of Simulation Tool
94(1)
1.10 Testing in a Non-50 Environment
95(1)
1.11 Others
96(1)
2 Review of the Field
96(8)
2.1 Amplifier Type
97(1)
2.2 Oscillator Type
98(2)
2.3 Frequency-Conversion-Type Circuits
100(2)
2.4 Optical-Integrated Type
102(2)
3 Choice of Planar Antennas
104(8)
3.1 Introduction
104(1)
3.2 Patch Antenna
105(4)
3.3 Slot Antennas
109(3)
3.4 Others
112(1)
4 FDTD Aalysis and Visualization
112(3)
4.1 Introduction
112(1)
4.2 FDTD
113(1)
4.3 Integration of the Active Device in FDTD
114(1)
4.4 Simulation of Active Antennas
114(1)
5 Case Studies
115(13)
5.1 Gunn/Patch Oscillator [82, 83]
115(3)
5.2 Active Slot Antenna [48]
118(2)
5.3 Noncontact ID Transponder [61]
120(2)
5.4 Monopulse Switch [84]
122(3)
5.5 Doppler Transceiver [87]
125(3)
References
128(7)
4 Coupled-Oscillator Arrays and Scanning Techniques
135(52)
Jonathan J. Lynch
Heng-Chia Chang
Robert A. York
1 Introduction
136(2)
2 Oscillator Modeling
138(7)
2.1 Injection-Locking
142(2)
2.2 Oscillator Noise
144(1)
3 Systems of Coupled Oscillators
145(26)
3.1 Derivation of the Dynamic Equations
147(2)
3.2 Stability of Solutions
149(1)
3.3 Broadband Coupling Networks
150(1)
3.4 Analysis, Synthesis, and Simplifications
151(2)
3.5 Linear Arrays with Nearest-Neighbor Bilateral Coupling
153(4)
3.6 Experimental Results
157(6)
3.7 Transient Response to Tuning Variations
163(3)
3.8 Phase Noise Analysis
166(5)
4 Scanning Oscillator Arrays
171(10)
4.1 Unilateral Injection-Locking
171(3)
4.2 Stephan's Scanning Approach
174(2)
4.3 Bilateral Coupling with Symmetric End Tuning
176(4)
4.4 Variations
180(1)
Appendix: Kurokawa's Substitution
181(2)
Acknowledgments
183(1)
References
183(4)
5 Quasi-Optical Antenna-Array Amplifiers
187(58)
Zoya B. Popovic
Robert A. York
Emilio A. Sovero
Jon Schoenberg
1 Introduction
188(5)
1.1 Quasi-Optical Amplifier Gain
190(1)
1.2 Quasi-Optical Amplifier Array Feed
190(3)
2 Antenna Elements for Amplifier Arrays
193(12)
2.1 Patch Antennas
193(1)
2.2 Slot Antennas
193(8)
2.3 Broadband Tapered-Slot Antennas
201(4)
3 Plane-Wave-Feed Amplifier Arrays
205(21)
3.1 Polarization-Preserving Class-A 24-Element MESFET Patch Array
205(3)
3.2 High-Efficiency Class-E MESFET Slot Array
208(2)
3.3 C-Band Folded-Slot Array
210(3)
3.4 X-Band Multiple-Slot Array with Commercial MMICs
213(1)
3.5 X-Band Tapered-Slot Array in Waveguide
214(2)
3.6 Ka-Band Quasi-Monolithic 2.4-W Array
216(3)
3.7 Monolithic 42-GHZ Quasi-Optic Amplifiers
219(4)
3.8 60-GHz Monolithic Patch/Slot Amplifier Array
223(3)
4 Lens Amplifiers
226(14)
4.1 Historical Development of Constrained Lenses
227(4)
4.2 Two-Dimensional Patch Lens Amplifier Array
231(3)
4.3 Low-Noise CPW Slot Lens Amplifier
234(6)
5 Conclusions
240(2)
References
242(3)
6 Multilayer and Distributed Arrays
245(32)
Amir Mortazawi
Carl L. Brockman
John F. Hubert
1 Introduction
245(3)
2 A Multilayer Amplifier Array
248(15)
2.1 Double-Layer Amplifier Architecture
251(1)
2.2 Through Wafer Coupling Mechanism
252(2)
2.3 The Amplifier's Unit Cells
254(1)
2.4 A Unit Cell with High Active Device Density
255(1)
2.5 Near-Field Excitation of Spatial Amplifiers
256(2)
2.6 Excitation Using Hard Horn Feeds
258(2)
2.7 Spatial Amplifier Measurements
260(3)
3 Multilayer Spatial Amplifier Arrays
263(4)
3.1 Monolithic Design of Double-Layer Arrays
264(3)
4 Spatial Power-Combining Oscillators Based on an Extended Resonance Technique
267(5)
4.1 Unit Cell Design
268(2)
4.2 Spatial Power-Combining Oscillator Array
270(2)
5 Discussion
272(2)
References
274(3)
7 Planar Quasi-Optical Power Combining
277(16)
Michael B. Steer
James W. Mink
Huan-Sheng Hwang
1 Introduction
277(3)
2 Theory of Planar Quasi-Optical Waveguiding
280(4)
3 Planar Quasi-Optical Oscillator
284(3)
4 Rectangular Waveguide Transition
287(1)
5 Planar Quasi-Optical Amplifier
288(4)
Acknowledgments
292(1)
References
292(1)
8 Grid Oscillators
293(38)
Zoya B. Popovic
Wayne A. Shriuma
Robert M. Weikle II
1 Introduction
293(5)
1.1 What Are Grid Oscillators?
293(3)
1.2 Figures-of-Merit for Grid Oscillators
296(2)
2 Overview
298(12)
2.1 Two-Terminal Grid Oscillators
299(2)
2.2 Three-Terminal Grid Oscillators
301(6)
2.3 Comparison of Reported Grids
307(3)
3 Analysis Techniques
310(10)
3.1 The Induced EMF Method for Planar Grids
311(3)
3.2 Generalized Full-Wave Analysis
314(3)
3.3 Verification of the Grid Models
317(3)
4 Power Optimization
320(2)
5 Cascaded Grids
322(5)
5.1 Voltage-Controlled Grid Oscillator
322(3)
5.2 Dual-Frequency Grid Oscillator
325(1)
5.3 Three-Dimensional Grid Oscillator
325(2)
6 Conclusion
327(1)
References
327(4)
9 Grid Amplifiers
331(46)
Michael P. De Lisio
Cheh-Ming Liu
1 Introduction and Background
331(6)
2 Modeling
337(5)
2.1 Gain Modeling
337(3)
2.2 Stability Modeling
340(2)
3 A 100-Element Hybrid pHEMT Grid Amplifier
342(19)
3.1 Grid Construction
342(4)
3.2 Gain
346(7)
3.3 Angular Dependence
353(3)
3.4 Noise
356(2)
3.5 Power
358(3)
4 A Monolithic HBT Grid Amplifier
361(6)
4.1 Grid Construction
361(1)
4.2 Gain
362(3)
4.3 Angular Dependence
365(1)
4.4 Power
365(2)
5 A Monolithic pHEMT Grid Amplifier
367(6)
5.1 Grid Construction
367(1)
5.2 Gain
368(2)
5.3 Tuning Range
370(3)
6 Conclusions
373(1)
Acknowledgments
373(1)
References
373(4)
10 Beam-Control Arrays
377(32)
Karl D. Stephan
1 Background
377(4)
1.1 Passive Grids for Millimeter-Wave Beams
378(2)
1.2 Active "RADANT" Grids for Microwave Beams
380(1)
2 Active Grid Arrays: Basic Principles of Operation
381(6)
2.1 Passive Square Mesh on a Dielectric Interface
381(2)
2.2 Active Mesh: Reflection Design
383(2)
2.3 Active Mesh: Transmission Design
385(1)
2.4 Active Mesh: Phase Shift Design
386(1)
3 Advantages and Limitations of Beam-Control Arrays
387(7)
3.1 Electrical Limitations
388(4)
3.2 Mechanical Limitations
392(2)
4 Examples of Beam-Control Arrays
394(12)
4.1 Switching Hybrid PIN-Diode Array for 94 GHz
394(5)
4.2 Switching and Phase Shifting Monolithic Varactor-Diode Array at 60 GHz
399(2)
4.3 Phase-Shifting Monolithic Varactor-Diode Array at 94 GHz
401(5)
5 Conclusion
406(1)
Acknowledgments
407(1)
References
407(2)
11 Frequency Conversion Grids
409(46)
Jung-Chih Chiao
1 Motivation
409(2)
1.1 Application
409(1)
1.2 Sources
410(1)
2 Waveguide Multipliers
411(4)
3 Quasi-Optical Grid Multipliers
415(2)
3.1 Concept
415(1)
3.2 Advantages
416(1)
3.3 Achievements
416(1)
4 66-GHz Frequency Doubler Grid
417(3)
5 99-GHz Frequency Tripler Grid
420(2)
6 THz Frequency Doubler Grid
422(24)
6.1 Planar Schottky Diodes
423(2)
6.2 The 6 x 6 Diode-Grid Arrays
425(2)
6.3 Design Approach
427(8)
6.4 Measurements
435(9)
6.5 Nonlinear Analysis
444(2)
7 Sideband Generator
446(3)
8 Conclusion
449(1)
Acknowledgments
450(1)
References
450(5)
12 Quasi-Optical Subsystems
455(30)
Zoya B. Popovic
Gerald Johnson
1 Introduction
455(3)
2 Transmitting Quasi-Optical Subsystems
458(12)
2.1 Two-Level Power Combining
458(5)
2.2 Beam Steering Using a Lens Amplifier
463(6)
2.3 Beam Forming Using a Lens Amplifier
469(1)
3 Receiving Quasi-Optical Subsystems
470(6)
3.1 Self-Oscillating Grid Mixer
471(2)
3.2 Receiving Lens Amplifier
473(1)
3.3 Quasi-Optical Receiver with Diversity
474(2)
4 Some Other Components for Quasi-Optical Subsystems
476(5)
4.1 A Quasi-Optical Linear-to-Circular Polarizer
476(2)
4.2 A Quasi-Optical Isolator/Directional Coupler
478(1)
4.3 Quasi-Optical Modulators
479(2)
5 What Needs To Be Done?
481(2)
5.1 Application Example--Space Communications
481(1)
5.2 Work To Be Done
482(1)
References
483(2)
13 Commercial Applications of Quasi-Optics
485(38)
Richard C. Compton
Mehran Matloubian
Mark J. Vaughan
1 Introduction
485(1)
2 Power Requirements
486(2)
2.1 Modulation Schemes
486(1)
2.2 Spectral Efficiency
487(1)
3 Device Technologies
488(10)
3.1 Diodes
489(2)
3.2 HBTs
491(3)
3.3 FETs
494(2)
3.4 Device Comparison
496(2)
4 Oscillator Arrays
498(10)
4.1 Array Phase Noise
498(4)
4.2 Modulation
502(3)
4.3 Omniazimuthal Arrays
505(3)
5 Amplifier Arrays
508(1)
5.1 Nonlinearities in Arrays
508(1)
5.2 Heat Dissipation
508(1)
6 Imaging and Receiver Applications
509(3)
7 Realization of Quasi-Optical Arrays
512(2)
8 References
514(9)
Index 523

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program